scholarly journals TECHNOLOGICAL MODEL OF BUILDING LIFE CYCLE

Statyba ◽  
2001 ◽  
Vol 7 (1) ◽  
pp. 73-77 ◽  
Author(s):  
V. Martinaitis ◽  
A. Rogoža
2001 ◽  
Vol 7 (1) ◽  
pp. 73-77 ◽  
Author(s):  
Vytautas Martinaitis ◽  
Artūras Rogoža

Under present conditions there are no regulating documents for building life span, maintenance, recondition and reconstruction works and periodicity in Lithuania. The suggested model allows to evaluate optimal values for building work periodicity. The purpose of the model is to calculate the depreciable value of compound construction (building) at every moment of its life cycle. There can be determined by this model the relations between building depreciable value and its components reconstruction character. The function mode of components deterioration can be changed with technology progress. It can be controlled by single coefficients in model. Single components reconstruction affects not only building aesthetic conditions, but also operating costs (energy consumption, amount of renovation work), which could be linked with elements deterioration. This model is called technological model, and it does not include cash expenditure calculations for work, materials and energy, but it is a basis for further economical modelling of building life cycle.


Vestnik MGSU ◽  
2018 ◽  
pp. 1474-1481 ◽  
Author(s):  
Igor A. Dorogan

Introduction. An approach to the development of the organizational-technological model of the life cycle of a medical facility building is presented. Buildings of medical organizations have a number of features in the design, construction and operation. The buildings of nuclear medicine are subject to particularly high requirements of radiation and fire safety. Materials and methods. To organize the design, construction and maintenance of medical buildings, it is advisable to create and develop an organizational and technological model of the medical building life cycle. Such model was created by the author in the form of a business processes sequence. Confirmation of the effectiveness of the model is carried out with the help of multi-criteria expert evaluation. Results. To solve this problem, it is proposed a number of changes in the order of the investment project carrying. A new element is the Preliminary justification of the requirements for the health facility. It should become a mandatory document when obtaining a town-planning plan of the ground area, which is in Russia a de facto permission to design. It is also proposed to prepare technical requirements of three levels. The first level requirements are used for pre-design stage procedures. The requirements of the second level are included in the medical and technical design assignment. The requirements of the third level are applied to the detailed design, as well as to the construction and maintenance of the facility. Requirements are included in the requirement system and must be checked at key stages of the project. At the preliminary project phase, it is also advisable to make a technical and economic calculation with the justification of the main technical solutions and technical and economic indicators. This document should also include a project management plan. New elements are included in organizational and technological models of different stages of the object life cycle. Conclusions. On the basis of the developed model, it is proposed to make adjustments to the normative guideline used in the construction management. For example, it is necessary to make mandatory documents of the pre-design stage. These works have to be paid by investor therefore the standard of design cost has to be increased.


Buildings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Daniel Satola ◽  
Martin Röck ◽  
Aoife Houlihan-Wiberg ◽  
Arild Gustavsen

Improving the environmental life cycle performance of buildings by focusing on the reduction of greenhouse gas (GHG) emissions along the building life cycle is considered a crucial step in achieving global climate targets. This paper provides a systematic review and analysis of 75 residential case studies in humid subtropical and tropical climates. The study investigates GHG emissions across the building life cycle, i.e., it analyses both embodied and operational GHG emissions. Furthermore, the influence of various parameters, such as building location, typology, construction materials and energy performance, as well as methodological aspects are investigated. Through comparative analysis, the study identifies promising design strategies for reducing life cycle-related GHG emissions of buildings operating in subtropical and tropical climate zones. The results show that life cycle GHG emissions in the analysed studies are mostly dominated by operational emissions and are the highest for energy-intensive multi-family buildings. Buildings following low or net-zero energy performance targets show potential reductions of 50–80% for total life cycle GHG emissions, compared to buildings with conventional energy performance. Implementation of on-site photovoltaic (PV) systems provides the highest reduction potential for both operational and total life cycle GHG emissions, with potential reductions of 92% to 100% and 48% to 66%, respectively. Strategies related to increased use of timber and other bio-based materials present the highest potential for reduction of embodied GHG emissions, with reductions of 9% to 73%.


2019 ◽  
Vol 37 (3) ◽  
pp. 273-287 ◽  
Author(s):  
Zoraya Roldán Rockow ◽  
Brandon Ross ◽  
Anna K. Black

Purpose The purpose of this paper is to present a review of existing models and tools for evaluating the adaptability of buildings. A baseline of the current state of the art in adaptability evaluation and adaptation decision support is established; from this baseline, gaps for future research are recommended. Design/methodology/approach A literature review was conducted to identify papers describing adaptability models and tools. The identified models were characterized based on their focus (new buildings, existing buildings, building life cycle), considered variables (physical and/or context features) and degree/type of validation. Findings Models can be grouped as those focusing on: evaluating adaptation decisions for existing buildings; the design of new buildings for future adaptation; and understanding adaptation throughout a building life cycle. Models focusing on existing building evaluation are further in development and validation than the other model types; as such, they are more suitable for use by practitioners. Another finding is that modeling of adaptability in buildings is still in its nascent stage and that data-driven quantitative modeling is a prime area for future research. Originality/value This paper is the first comprehensive review of models and tools for evaluating adaptability. Other works have evaluated the topic of adaptability more broadly, but this is the first paper to systematically characterize existing models and tools. Based on the review future, research topics are recommended.


Sign in / Sign up

Export Citation Format

Share Document