Genetic diversity and phylogeny of tea plant (Camellia sinensis) and its related species and varieties in the sectionTheagenusCamelliadetermined by randomly amplified polymorphic DNA analysis

2002 ◽  
Vol 77 (6) ◽  
pp. 729-732 ◽  
Author(s):  
Liang Chen ◽  
Satoshi Yamaguchi
1996 ◽  
Vol 121 (6) ◽  
pp. 1020-1023 ◽  
Author(s):  
Xianping Qu ◽  
Jiang Lu ◽  
Olusola Lamikanra

Two morphologically distinct types of grapes belonging to the subgenera Euvitis and Muscadinia in the genus Vitis are cultivated in the United States. The former is commonly called bunch grapes while the latter is usually called muscadine. Genetic diversity among these grapes was investigated using RAPD markers. Sixteen grape cultivars, with parentage including V. rotundifolia Michx., V. vinifera L., and several American Vitis species, were used for the RAPD analysis. A total of 156 RAPD markers was produced from 19 random primers, over 90% of which was polymorphic among the muscadine and the bunch grapes. Polymorphisms were lower within each subgenus. Relationships between these two subgenera were estimated based on band-sharing and cluster analysis. The average genetic distance between the bunch and the muscadine grape cultivars was 0.45. The results based on DNA analysis agree with isozyme data obtained from a separate study, which demonstrated that muscadine grapes share very few common alleles with American bunch grapes and European grapes.


2001 ◽  
Vol 67 (8) ◽  
pp. 3379-3384 ◽  
Author(s):  
Gaëlle Trébaol ◽  
Charles Manceau ◽  
Yves Tirilly ◽  
Stéphane Boury

ABSTRACT The randomly amplified polymorphic DNA (RAPD) method was used to investigate the genetic diversity in Xanthomonas cynarae, which causes bacterial bract spot disease of artichoke. This RAPD analysis was also intended to identify molecular markers characteristic of this species, in order to develop PCR-based markers which can be used to detect this pathogenic bacterium in artichoke fields. Among the 340 RAPD primers tested, 40 were selected on their ability to produce reproducible and reliable fingerprints in our genetic background. These 40 primers produced almost similar patterns for the 37 X. cynarae strains studied, different from the fingerprints obtained for other Xanthomonas species and other xanthomonad-like bacteria isolated from artichoke leaves. Therefore, X. cynarae strains form a homogeneous genetic group. However, a little DNA polymorphism within this species was observed and the collection of X. cynarae isolates was divided into two groups (one containing three strains, the second one including all other strains). Out of seven RAPD markers characteristic of X. cynarae that were cloned, four did not hybridize to the genomic DNA of strains belonging to other Xanthomonas species. These four RAPD markers were converted into PCR markers (specific characterized amplified regions [SCARs]); they were sequenced, and a PCR primer pair was designed for each of them. Three derived SCARs are good candidates to develop PCR-based tests to detectX. cynarae in artichoke fields.


2004 ◽  
Vol 54 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Satoru Matsumoto ◽  
Yoshikazu Kiriiwa ◽  
Satoshi Yamaguchi

Sign in / Sign up

Export Citation Format

Share Document