scholarly journals Genetic diversity, linkage disequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou plateau, using genome-wide SNPs developed by genotyping-by-sequencing

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Suzhen Niu ◽  
Qinfei Song ◽  
Hisashi Koiwa ◽  
Dahe Qiao ◽  
Degang Zhao ◽  
...  
2021 ◽  
Author(s):  
Zhifei Zhao ◽  
Qinfei Song ◽  
Dingchen Bai ◽  
Suzhen Niu ◽  
Yingqin He ◽  
...  

Abstract Background Tea plants originated from the southwest of China. Guizhou is one of the origin center of tea plants, which is rich in tea plant germplasm resources. However, the distribution characteristics and transmission model of tea plant were still unclear. Results We collected 253 cultivated-type tea plant accessions from Guizhou plateau and analyzed the genetic diversity, PCA, phylogenetic, population structure, LD, and development of core collection using the genotyping-by-sequencing (GBS) approach. A total of 112,072 high-quality SNPs were identified, which was further used to analyze the genetic diversity and population structure. In this study, we found that the genetic diversity in cultivated-type tea accessions of PR Basin were significantly higher than that in cultivated-type tea accessions of YR Basin. Moreover, four groups, including three pure groups (CG-1, CG-2 and CG-3) and one admixture group (CG-4), were identified based on population structure analysis, which was verified by PAC and phylogenetic analysis. Our results showed that the highest GD and Fst values were found in CG-2 vs CG-3, followed by CG-1 vs CG-2 and CG-1 vs CG-3. The lowest GD and Fst values were detected in CG-4 vs CG-1, CG-4 vs CG-2, and CG-4 vs CG-3. Conclusions This study provided the evidence to confirm the contribution of PR and YR Basins and ancient hub road section to the transmission of cultivated-type tea accessions in Guizhou plateau. The genetic diversity, population structure and core collection revealed by our study will benefit further genetic studies, germplasm protection, and breeding.


Genomics ◽  
2020 ◽  
Vol 112 (2) ◽  
pp. 1978-1987 ◽  
Author(s):  
Junyan Feng ◽  
Shan Zhao ◽  
Ming Li ◽  
Cong Zhang ◽  
Huijuan Qu ◽  
...  

2019 ◽  
Vol 144 (4) ◽  
pp. 257-263 ◽  
Author(s):  
Xingbo Wu ◽  
Lisa W. Alexander

Hydrangea macrophylla (bigleaf hydrangea) is one of the most important floral and nursery crops worldwide. However, breeding of new bigleaf hydrangea cultivars has been hampered by a long breeding cycle and lack of genetic resources. This study investigated the genetic diversity and population structure of 82 bigleaf hydrangea cultivars using single-nucleotide polymorphisms (SNPs) originated from genotyping-by-sequencing. A total of 5803 high-quality SNPs were discovered in a bigleaf hydrangea cultivar panel. A phylogenetic analysis and analysis of molecular variance based on discovered SNPs concluded the taxonomic classification of H. macrophylla ssp. serrata as a subspecies of H. macrophylla. Principal component analysis confirmed ‘Preziosa’ as a hybrid between H. macrophylla ssp. macrophylla and H. macrophylla ssp. serrata. In addition, the cultivar Lady in Red was also found to be a hybrid between the two subspecies. The population structure analysis identified three groups among the 82 cultivars. All H. macrophylla ssp. serrata cultivars belonged to one group, and two groups were revealed within H. macrophylla ssp. macrophylla. The separation within H. macrophylla ssp. macrophylla indicated a second gene pool due to breeding efforts that have targeted similar breeding goals for bigleaf hydrangea. The discovered SNPs and the phylogenetic results will facilitate further exploitation and understanding of phylogenetic relationships of bigleaf hydrangea and will serve as a reference for hydrangea breeding improvements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Wang ◽  
Chunyan Ma ◽  
Longling Ouyang ◽  
Wei Chen ◽  
Ming Zhao ◽  
...  

AbstractIn order to provide valuable guidelines for the conservation of germplasm of Lateolabrax maculatus, the genetic diversity and population structure analysis were evaluated for eight geographic populations along coastal regions of China, using 11 microsatellite DNA markers. The genetic parameters obtained showed that, eight populations can be clustered into two groups, the Northern group and the Southern group, concordant with their geographical positions. The UPGMA tree constructed according to the Nei’s genetic distance along with the structure analysis and discriminant analysis of principal component also supported this result. This might be explained by the geographic separation and the divergent environmental conditions among the populations. It's worth noting that, QD (Qingdao) population from northern area was assigned to the Southern group and showed a close genetic relationship and similar genetic constitution with the southern populations. We speculated that large scales of anthropogenic transportation of wild fries from QD populations to the southern aquaculture areas in history should be the primary cause. The populations from GY (Ganyu), RD (Rudong) and BH (Binhai) had higher genetic diversity and showed limited genetic exchange with other populations, indicating better conservation of the natural resources in these regions. All populations were indicated to have experienced bottleneck events in history.


Sign in / Sign up

Export Citation Format

Share Document