scholarly journals An assessment of genetic diversity among Camellia sinensis L. (cultivated tea) and its wild relatives based on randomly amplified polymorphic DNA and organelle-specific STS

Heredity ◽  
1997 ◽  
Vol 78 (6) ◽  
pp. 603-611 ◽  
Author(s):  
Francis N Wachira ◽  
Wayne Powell ◽  
Robbie Waugh
2014 ◽  
Vol 40 (12) ◽  
pp. 2118
Author(s):  
Shao-Jie LIU ◽  
Lin CHI ◽  
Wen-Gang XIE ◽  
Nan HAN ◽  
Ying-Hui CHEN ◽  
...  

Author(s):  
Ghazal Ghobadi ◽  
Alireza Etminan ◽  
Ali Mehras Mehrabi ◽  
Lia Shooshtari

Abstract Background Evaluation of genetic diversity and relationships among crop wild relatives is an important task in crop improvement. The main objective of the current study was to estimate molecular variability within the set of 91 samples from Triticum aestivum, Aegilops cylindrica, and Aegilops crassa species using 30 CAAT box–derived polymorphism (CBDP) and start codon targeted (SCoT) markers. Results Fifteen SCoT and Fifteen CBDP primers produced 262 and 298 fragments which all of them were polymorphic, respectively. The number of polymorphic bands (NPB), polymorphic information content (PIC), resolving power (Rp), and marker index (MI) for SCoT primers ranged from 14 to 23, 0.31 to 0.39, 2.55 to 7.49, and 7.56 to 14.46 with an average of 17.47, 0.34, 10.44, and 5.69, respectively, whereas these values for CBDP primers were 15 to 26, 0.28 to 0.36, 3.82 to 6.94, and 4.74 to 7.96 with a mean of 19.87, 0.31, 5.35, and 6.24, respectively. Based on both marker systems, analysis of molecular variance (AMOVA) indicated that the portion of genetic diversity within species was more than among them. In both analyses, the highest values of the number of observed (Na) and effective alleles (Ne), Nei’s gene diversity (He), and Shannon’s information index (I) were estimated for Ae. cylindrica species. Conclusion The results of cluster analysis and population structure showed that SCoT and CBDP markers grouped all samples based on their genomic constitutions. In conclusion, the used markers are very effective techniques for the evaluation of the genetic diversity in wild relatives of wheat.


Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 201-210 ◽  
Author(s):  
F. N. Wachira ◽  
R. Waugh ◽  
W. Powell ◽  
C. A. Hackett

Camellia sinensis is a beverage tree crop native to Southeast Asia and introductions have been made into several nonindigenous countries. No systematic assessment of genetic variability in tea has been done anywhere. In this study, random amplified polymorphic DNA (RAPD) analysis was used to estimate genetic diversity and taxonomic relationships in 38 clones belonging to the three tea varieties, assamica, sinensis, and assamica ssp. lasiocalyx. Extensive genetic variability was detected between species, which was partitioned into between and within population components. Seventy percent of the variation was detected within populations. Analyses based on band sharing separated the three populations in a manner consistent with both the present taxonomy of tea and with the known pedigrees of some clones. RAPD analysis also discriminated all of the 38 commercial clones, even those which cannot be distinguished on the basis of morphological and phenotypic traits.Key words: genetic diversity, RAPDs, Camellia sinensis.


2021 ◽  
Vol 66 (3) ◽  
pp. 170-179
Author(s):  
Sengsoulichan Dethvongsa ◽  
Vu Nguyen Anh ◽  
Van Tran Khanh

RAPD (Randomly Amplified Polymorphic DNA) is an indicator for high and stable polymorphism, widely used in the study of the diversity of cassava. In this paper, the results of using 20 polymorphic primers OPK combined with the establishment of the phylogenetic tree to analyze the genetic diversity of 26 cassava varieties with different responses to waterlogging conditions by using the RAPD-PCR technique were presented. The purpose of this experiment was to show the genetic relevance of the studied cassava varieties. The results showed that the flood tolerance of cassava was not related to the polymorphism and branching characteristics of the stem. This information may be use as a basis for selecting flood-tolerant cassava varieties for cassava production, as well as the basis for selecting genetically different parents for breeding.


Sign in / Sign up

Export Citation Format

Share Document