Cryopreserved human bone marrow mononuclear cells as a source of mesenchymal stromal cells: application in osteoporosis research

Cytotherapy ◽  
2008 ◽  
Vol 10 (5) ◽  
pp. 460-468 ◽  
Author(s):  
A. Casado-Díaz ◽  
R. Santiago-Mora ◽  
R. Jiménez ◽  
J. Caballero-Villarraso ◽  
C. Herrera ◽  
...  
Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06517
Author(s):  
Lyudmila M. Mezhevikina ◽  
Dmitriy A. Reshetnikov ◽  
Maria G. Fomkina ◽  
Nurbol O. Appazov ◽  
Saltanat Zh. Ibadullayeva ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shun Takao ◽  
Taku Nakashima ◽  
Takeshi Masuda ◽  
Masashi Namba ◽  
Shinjiro Sakamoto ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) are a potential therapeutic tool for pulmonary fibrosis. However, ex vivo MSC expansion using serum poses risks of harmful immune responses or unknown pathogen infections in the recipients. Therefore, MSCs cultured in serum-free media (SF-MSCs) are ideal for clinical settings; however, their efficacy in pulmonary fibrosis is unknown. Here, we investigated the effects of SF-MSCs on bleomycin-induced pulmonary inflammation and fibrosis compared to those of MSCs cultured in serum-containing media (S-MSCs). Methods SF-MSCs and S-MSCs were characterized in vitro using RNA sequence analysis. The in vivo kinetics and efficacy of SF-MSC therapy were investigated using a murine model of bleomycin-induced pulmonary fibrosis. For normally distributed data, Student’s t test and one-way repeated measures analysis of variance followed by post hoc Tukey’s test were used for comparison between two groups and multiple groups, respectively. For non-normally distributed data, Kruskal–Wallis and Mann–Whitney U tests were used for comparison between groups, using e Bonferroni’s correction for multiple comparisons. All tests were two-sided, and P < 0.05 was considered statistically significant. Results Serum-free media promoted human bone marrow-derived MSC expansion and improved lung engraftment of intravenously administered MSCs in recipient mice. SF-MSCs inhibited the reduction in serum transforming growth factor-β1 and the increase of interleukin-6 in both the serum and the bronchoalveolar lavage fluid during bleomycin-induced pulmonary fibrosis. SF-MSC administration increased the numbers of regulatory T cells (Tregs) in the blood and lungs more strongly than in S-MSC administration. Furthermore, SF-MSCs demonstrated enhanced antifibrotic effects on bleomycin-induced pulmonary fibrosis, which were diminished by antibody-mediated Treg depletion. Conclusions SF-MSCs significantly suppressed BLM-induced pulmonary inflammation and fibrosis through enhanced induction of Tregs into the lungs and corrected the dysregulated cytokine balance. Therefore, SF-MSCs could be a useful tool for preventing pulmonary fibrosis progression without the demerits of serum use.


2007 ◽  
Vol 361-363 ◽  
pp. 1149-1152
Author(s):  
Jeong Joon Yoo ◽  
Jeon Hyun Bang ◽  
Kyung Hoi Koo ◽  
Kang Sup Yoon ◽  
Hee Joong Kim

The relationships between donor age and gender and initial isolation yield and the osteogenic potentials of human bone marrow stromal cells (hBMSCs) have not been clearly elucidated. The authors investigated whether isolation yields and the osteogenic differentiation potentials of hBMSCs are indeed dependent on donor age or gender. Fresh bone marrow was aspirated from iliac crest of 72 donors (mean age 54.1 years; range, 23-84 years; 39 men and 33 women) undergoing total hip arthroplasty. Numbers of mononuclear cells, numbers of colony forming unit-fibroblasts (CFU-Fs) and alkaline phosphatase (ALP)-positive CFU-Fs, and numbers of BMSCs after isolation culture were not found to be significantly dependent on donor age or gender. Moreover, no significant age- or gender-related differences were observed in terms of the proliferation activities, ALP activities, and calcium contents of BMSCs during in vitro osteogenic differentiation. The data obtained from 72 human donors revealed no significant age- or genderrelated differences among hBMSCs in terms of isolation yields, proliferation activities, and osteogenic potentials.


Sign in / Sign up

Export Citation Format

Share Document