scholarly journals Proteolytic fragments of fibronectin function as matrikines driving the chemotactic affinity of prostate cancer cells to human bone marrow mesenchymal stromal cells via the α5β1 integrin

2016 ◽  
Vol 11 (4) ◽  
pp. 305-315 ◽  
Author(s):  
Raghav Joshi ◽  
Edi Goihberg ◽  
Wenying Ren ◽  
Monika Pilichowska ◽  
Paul Mathew
2004 ◽  
Vol 19 (10) ◽  
pp. 1712-1721 ◽  
Author(s):  
Rachel Nyambo ◽  
Neil Cross ◽  
Jenny Lippitt ◽  
Ingunn Holen ◽  
Gorden Bryden ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sukhneeraj P. Kaur ◽  
Arti Verma ◽  
Hee. K. Lee ◽  
Lillie M. Barnett ◽  
Payaningal R. Somanath ◽  
...  

AbstractCancer-associated fibroblasts (CAFs) are the most abundant stromal cell type in the tumor microenvironment. CAFs orchestrate tumor-stromal interactions, and contribute to cancer cell growth, metastasis, extracellular matrix (ECM) remodeling, angiogenesis, immunomodulation, and chemoresistance. However, CAFs have not been successfully targeted for the treatment of cancer. The current study elucidates the significance of glypican-1 (GPC-1), a heparan sulfate proteoglycan, in regulating the activation of human bone marrow-derived stromal cells (BSCs) of fibroblast lineage (HS-5). GPC-1 inhibition changed HS-5 cellular and nuclear morphology, and increased cell migration and contractility. GPC-1 inhibition also increased pro-inflammatory signaling and CAF marker expression. GPC-1 induced an activated fibroblast phenotype when HS-5 cells were exposed to prostate cancer cell conditioned media (CCM). Further, treatment of human bone-derived prostate cancer cells (PC-3) with CCM from HS-5 cells exhibiting GPC-1 loss increased prostate cancer cell aggressiveness. Finally, GPC-1 was expressed in mouse tibia bone cells and present during bone loss induced by mouse prostate cancer cells in a murine prostate cancer bone model. These data demonstrate that GPC-1 partially regulates the intrinsic and extrinsic phenotype of human BSCs and transformation into activated fibroblasts, identify novel functions of GPC-1, and suggest that GPC-1 expression in BSCs exerts inhibitory paracrine effects on the prostate cancer cells. This supports the hypothesis that GPC-1 may be a novel pharmacological target for developing anti-CAF therapeutics to control cancer.


Heliyon ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. e06517
Author(s):  
Lyudmila M. Mezhevikina ◽  
Dmitriy A. Reshetnikov ◽  
Maria G. Fomkina ◽  
Nurbol O. Appazov ◽  
Saltanat Zh. Ibadullayeva ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shun Takao ◽  
Taku Nakashima ◽  
Takeshi Masuda ◽  
Masashi Namba ◽  
Shinjiro Sakamoto ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) are a potential therapeutic tool for pulmonary fibrosis. However, ex vivo MSC expansion using serum poses risks of harmful immune responses or unknown pathogen infections in the recipients. Therefore, MSCs cultured in serum-free media (SF-MSCs) are ideal for clinical settings; however, their efficacy in pulmonary fibrosis is unknown. Here, we investigated the effects of SF-MSCs on bleomycin-induced pulmonary inflammation and fibrosis compared to those of MSCs cultured in serum-containing media (S-MSCs). Methods SF-MSCs and S-MSCs were characterized in vitro using RNA sequence analysis. The in vivo kinetics and efficacy of SF-MSC therapy were investigated using a murine model of bleomycin-induced pulmonary fibrosis. For normally distributed data, Student’s t test and one-way repeated measures analysis of variance followed by post hoc Tukey’s test were used for comparison between two groups and multiple groups, respectively. For non-normally distributed data, Kruskal–Wallis and Mann–Whitney U tests were used for comparison between groups, using e Bonferroni’s correction for multiple comparisons. All tests were two-sided, and P < 0.05 was considered statistically significant. Results Serum-free media promoted human bone marrow-derived MSC expansion and improved lung engraftment of intravenously administered MSCs in recipient mice. SF-MSCs inhibited the reduction in serum transforming growth factor-β1 and the increase of interleukin-6 in both the serum and the bronchoalveolar lavage fluid during bleomycin-induced pulmonary fibrosis. SF-MSC administration increased the numbers of regulatory T cells (Tregs) in the blood and lungs more strongly than in S-MSC administration. Furthermore, SF-MSCs demonstrated enhanced antifibrotic effects on bleomycin-induced pulmonary fibrosis, which were diminished by antibody-mediated Treg depletion. Conclusions SF-MSCs significantly suppressed BLM-induced pulmonary inflammation and fibrosis through enhanced induction of Tregs into the lungs and corrected the dysregulated cytokine balance. Therefore, SF-MSCs could be a useful tool for preventing pulmonary fibrosis progression without the demerits of serum use.


Sign in / Sign up

Export Citation Format

Share Document