Theoretical evaluation of the Reynolds shear stress and flow parameters in transitionally rough turbulent boundary Layers

2009 ◽  
Vol 10 ◽  
pp. N5 ◽  
Author(s):  
Brian Brzek ◽  
Jorge Bailon-Cuba ◽  
Stefano Leonardi ◽  
Luciano Castillo
1999 ◽  
Vol 121 (3) ◽  
pp. 526-532 ◽  
Author(s):  
Andreas C. Schwarz ◽  
Michael W. Plesniak ◽  
S. N. B. Murthy

Turbomachinery flows can be extremely difficult to predict, due to a multitude of effects, including interacting strain rates, compressibility, and rotation. The primary objective of this investigation was to study the influence of multiple strain rates (favorable streamwise pressure gradient combined with radial pressure gradient due to convex curvature) on the structure of the turbulent boundary layer. The emphasis was on the initial region of curvature, which is relevant to the leading edge of a stator vane, for example. In order to gain better insight into the dynamics of complex turbulent boundary layers, detailed velocity measurements were made in a low-speed water tunnel using a two-component laser Doppler velocimeter. The mean and fluctuating velocity profiles showed that the influence of the strong favorable pressure augmented the stabilizing effects of convex curvature. The trends exhibited by the primary Reynolds shear stress followed those of the mean turbulent bursting frequency, i.e., a decrease in the bursting frequency coincided with a reduction of the peak Reynolds shear stress. It was found that the effects of these two strain rates were not superposable, or additive in any simple manner. Thus, the dynamics of the large energy-containing eddies and their interaction with the turbulence production mechanisms must be considered for modeling turbulent flows with multiple strain rates.


2015 ◽  
Vol 775 ◽  
pp. 189-200 ◽  
Author(s):  
Guillermo Araya ◽  
Luciano Castillo ◽  
Fazle Hussain

Direct numerical simulation of highly accelerated turbulent boundary layers (TBLs) reveals that the Reynolds shear stress,$\overline{u^{\prime }v^{\prime }}^{+}$, monotonically decreases downstream and exhibits a logarithmic behaviour (e.g. $-\overline{u^{\prime }v^{\prime }}^{+}=-(1/A_{uv})\ln y^{+}+B_{uv}$) in the mesolayer region (e.g. $50\leqslant y^{+}\leqslant 170$). The thickness of the log layer of$\overline{u^{\prime }v^{\prime }}^{+}$increases with the streamwise distance and with the pressure gradient strength, extending over a large portion of the TBL thickness (up to 55 %). Simulations reveal that$V^{+}\,\partial U^{+}/\partial y^{+}\sim 1/y^{+}\sim \partial \overline{u^{\prime }v^{\prime }}^{+}/\partial y^{+}$, resulting in a logarithmic$\overline{u^{\prime }v^{\prime }}^{+}$profile. Also,$V^{+}\sim -y^{+}$is no longer negligible as in zero-pressure-gradient (ZPG) flows. Other experimental/numerical data at similar favourable-pressure-gradient (FPG) strengths also show the presence of a log region in$\overline{u^{\prime }v^{\prime }}^{+}$. This log region in$\overline{u^{\prime }v^{\prime }}^{+}$is larger in sink flows than in other spatially developing FPG flows. The latter flows exhibit the presence of a small power-law region in$\overline{u^{\prime }v^{\prime }}^{+}$, which is non-existent in sink flows.


A numerical method is presented for calculating unsteady two-dimensional laminar and turbulent boundary layers with fluctuations in external velocity. The method used an eddy-viscosity formulation to model the Reynolds shear stress term appropriate to turbulent flow and an efficient two-point finite-difference method to solve the governing boundary-layer equations. The method is used to calculate phase angles between the wall shear stress and an oscillating external laminar boundary layer over a flat plate. The results are in excellent agreement with the analytic solutions of Lighthill for the high- and low-frequency limits and provide information in the region between. Similar calculations for turbulent flows are compared with experimental data and the method shown to be more precise than previously described attempts to represent flows of this type. The agreement between calculations and measurements is imperfect but probably within the resolution of the experiments and adequate for engineering purposes.


1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


1996 ◽  
Vol 118 (4) ◽  
pp. 728-736 ◽  
Author(s):  
S. P. Mislevy ◽  
T. Wang

The effects of adverse pressure gradients on the thermal and momentum characteristics of a heated transitional boundary layer were investigated with free-stream turbulence ranging from 0.3 to 0.6 percent. Boundary layer measurements were conducted for two constant-K cases, K1 = −0.51 × 10−6 and K2 = −1.05 × 10−6. The fluctuation quantities, u′, ν′, t′, the Reynolds shear stress (uν), and the Reynolds heat fluxes (νt and ut) were measured. In general, u′/U∞, ν′/U∞, and νt have higher values across the boundary layer for the adverse pressure-gradient cases than they do for the baseline case (K = 0). The development of ν′ for the adverse pressure gradients was more actively involved than that of the baseline. In the early transition region, the Reynolds shear stress distribution for the K2 case showed a near-wall region of high-turbulent shear generated at Y+ = 7. At stations farther downstream, this near-wall shear reduced in magnitude, while a second region of high-turbulent shear developed at Y+ = 70. For the baseline case, however, the maximum turbulent shear in the transition region was generated at Y+ = 70, and no near-wall high-shear region was seen. Stronger adverse pressure gradients appear to produce more uniform and higher t′ in the near-wall region (Y+ < 20) in both transitional and turbulent boundary layers. The instantaneous velocity signals did not show any clear turbulent/nonturbulent demarcations in the transition region. Increasingly stronger adverse pressure gradients seemed to produce large non turbulent unsteadiness (or instability waves) at a similar magnitude as the turbulent fluctuations such that the production of turbulent spots was obscured. The turbulent spots could not be identified visually or through conventional conditional-sampling schemes. In addition, the streamwise evolution of eddy viscosity, turbulent thermal diffusivity, and Prt, are also presented.


1996 ◽  
Vol 118 (2) ◽  
pp. 276-284 ◽  
Author(s):  
K. A. Thole ◽  
D. G. Bogard

High freestream turbulence levels significantly alter the characteristics of turbulent boundary layers. Numerous studies have been conducted with freestreams having turbulence levels of 7 percent or less, but studies using turbulence levels greater than 10 percent have been essentially limited to the effects on wall shear stress and heat transfer. This paper presents measurements of the boundary layer statistics for the interaction between a turbulent boundary layer and a freestream with turbulence levels ranging from 10 to 20 percent. The boundary layer statistics reported in this paper include mean and rms velocities, velocity correlation coefficients, length scales, and power spectra. Although the freestream turbulent eddies penetrate into the boundary layer at high freestream turbulence levels, as shown through spectra and length scale measurements, the mean velocity profile still exhibits a log-linear region. Direct measurements of total shear stress (turbulent shear stress and viscous shear stress) confirm the validity of the log-law at high freestream turbulence levels. Velocity defects in the outer region of the boundary layer were significantly decreased resulting in negative wake parameters. Fluctuating rms velocities were only affected when the freestream turbulence levels exceeded the levels of the boundary layer generated rms velocities. Length scales and power spectra measurements showed large scale turbulent eddies penetrate to within y+ = 15 of the wall.


Sign in / Sign up

Export Citation Format

Share Document