Calculation of unsteady two-dimensional laminar and turbulent boundary layers with fluctuations in external velocity

A numerical method is presented for calculating unsteady two-dimensional laminar and turbulent boundary layers with fluctuations in external velocity. The method used an eddy-viscosity formulation to model the Reynolds shear stress term appropriate to turbulent flow and an efficient two-point finite-difference method to solve the governing boundary-layer equations. The method is used to calculate phase angles between the wall shear stress and an oscillating external laminar boundary layer over a flat plate. The results are in excellent agreement with the analytic solutions of Lighthill for the high- and low-frequency limits and provide information in the region between. Similar calculations for turbulent flows are compared with experimental data and the method shown to be more precise than previously described attempts to represent flows of this type. The agreement between calculations and measurements is imperfect but probably within the resolution of the experiments and adequate for engineering purposes.

1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


2009 ◽  
Vol 623 ◽  
pp. 273-282 ◽  
Author(s):  
T. B. NICKELS

The constraints necessary for equilibrium solutions of the boundary layer equations are explored for turbulent boundary layers subject to lateral convergence and divergence and with longitudinal pressure gradients. It is shown that in addition to the well-known equilibrium solutions for two-dimensional boundary layers there are additionalpossibleequilibrium states for boundary layers with these extra rates-of-strain acting. The necessary constraints for equilibrium are derived and discussed.


1996 ◽  
Vol 118 (4) ◽  
pp. 728-736 ◽  
Author(s):  
S. P. Mislevy ◽  
T. Wang

The effects of adverse pressure gradients on the thermal and momentum characteristics of a heated transitional boundary layer were investigated with free-stream turbulence ranging from 0.3 to 0.6 percent. Boundary layer measurements were conducted for two constant-K cases, K1 = −0.51 × 10−6 and K2 = −1.05 × 10−6. The fluctuation quantities, u′, ν′, t′, the Reynolds shear stress (uν), and the Reynolds heat fluxes (νt and ut) were measured. In general, u′/U∞, ν′/U∞, and νt have higher values across the boundary layer for the adverse pressure-gradient cases than they do for the baseline case (K = 0). The development of ν′ for the adverse pressure gradients was more actively involved than that of the baseline. In the early transition region, the Reynolds shear stress distribution for the K2 case showed a near-wall region of high-turbulent shear generated at Y+ = 7. At stations farther downstream, this near-wall shear reduced in magnitude, while a second region of high-turbulent shear developed at Y+ = 70. For the baseline case, however, the maximum turbulent shear in the transition region was generated at Y+ = 70, and no near-wall high-shear region was seen. Stronger adverse pressure gradients appear to produce more uniform and higher t′ in the near-wall region (Y+ < 20) in both transitional and turbulent boundary layers. The instantaneous velocity signals did not show any clear turbulent/nonturbulent demarcations in the transition region. Increasingly stronger adverse pressure gradients seemed to produce large non turbulent unsteadiness (or instability waves) at a similar magnitude as the turbulent fluctuations such that the production of turbulent spots was obscured. The turbulent spots could not be identified visually or through conventional conditional-sampling schemes. In addition, the streamwise evolution of eddy viscosity, turbulent thermal diffusivity, and Prt, are also presented.


1999 ◽  
Vol 121 (3) ◽  
pp. 526-532 ◽  
Author(s):  
Andreas C. Schwarz ◽  
Michael W. Plesniak ◽  
S. N. B. Murthy

Turbomachinery flows can be extremely difficult to predict, due to a multitude of effects, including interacting strain rates, compressibility, and rotation. The primary objective of this investigation was to study the influence of multiple strain rates (favorable streamwise pressure gradient combined with radial pressure gradient due to convex curvature) on the structure of the turbulent boundary layer. The emphasis was on the initial region of curvature, which is relevant to the leading edge of a stator vane, for example. In order to gain better insight into the dynamics of complex turbulent boundary layers, detailed velocity measurements were made in a low-speed water tunnel using a two-component laser Doppler velocimeter. The mean and fluctuating velocity profiles showed that the influence of the strong favorable pressure augmented the stabilizing effects of convex curvature. The trends exhibited by the primary Reynolds shear stress followed those of the mean turbulent bursting frequency, i.e., a decrease in the bursting frequency coincided with a reduction of the peak Reynolds shear stress. It was found that the effects of these two strain rates were not superposable, or additive in any simple manner. Thus, the dynamics of the large energy-containing eddies and their interaction with the turbulence production mechanisms must be considered for modeling turbulent flows with multiple strain rates.


1969 ◽  
Vol 73 (698) ◽  
pp. 143-147 ◽  
Author(s):  
M. K. Bull

Although a numerical solution of the turbulent boundary-layer equations has been achieved by Mellor and Gibson for equilibrium layers, there are many occasions on which it is desirable to have closed-form expressions representing the velocity profile. Probably the best known and most widely used representation of both equilibrium and non-equilibrium layers is that of Coles. However, when velocity profiles are examined in detail it becomes apparent that considerable care is necessary in applying Coles's formulation, and it seems to be worthwhile to draw attention to some of the errors and inconsistencies which may arise if care is not exercised. This will be done mainly by the consideration of experimental data. In the work on constant pressure layers, emphasis tends to fall heavily on the author's own data previously reported in ref. 1, because the details of the measurements are readily available; other experimental work is introduced where the required values can be obtained easily from the published papers.


1996 ◽  
Vol 118 (2) ◽  
pp. 276-284 ◽  
Author(s):  
K. A. Thole ◽  
D. G. Bogard

High freestream turbulence levels significantly alter the characteristics of turbulent boundary layers. Numerous studies have been conducted with freestreams having turbulence levels of 7 percent or less, but studies using turbulence levels greater than 10 percent have been essentially limited to the effects on wall shear stress and heat transfer. This paper presents measurements of the boundary layer statistics for the interaction between a turbulent boundary layer and a freestream with turbulence levels ranging from 10 to 20 percent. The boundary layer statistics reported in this paper include mean and rms velocities, velocity correlation coefficients, length scales, and power spectra. Although the freestream turbulent eddies penetrate into the boundary layer at high freestream turbulence levels, as shown through spectra and length scale measurements, the mean velocity profile still exhibits a log-linear region. Direct measurements of total shear stress (turbulent shear stress and viscous shear stress) confirm the validity of the log-law at high freestream turbulence levels. Velocity defects in the outer region of the boundary layer were significantly decreased resulting in negative wake parameters. Fluctuating rms velocities were only affected when the freestream turbulence levels exceeded the levels of the boundary layer generated rms velocities. Length scales and power spectra measurements showed large scale turbulent eddies penetrate to within y+ = 15 of the wall.


2016 ◽  
Vol 801 ◽  
pp. 670-703 ◽  
Author(s):  
Hangjian Ling ◽  
Siddarth Srinivasan ◽  
Kevin Golovin ◽  
Gareth H. McKinley ◽  
Anish Tuteja ◽  
...  

Digital holographic microscopy is used for characterizing the profiles of mean velocity, viscous and Reynolds shear stresses, as well as turbulence level in the inner part of turbulent boundary layers over several super-hydrophobic surfaces (SHSs) with varying roughness/texture characteristics. The friction Reynolds numbers vary from 693 to 4496, and the normalized root mean square values of roughness $(k_{rms}^{+})$ vary from 0.43 to 3.28. The wall shear stress is estimated from the sum of the viscous and Reynolds shear stress at the top of roughness elements and the slip velocity is obtained from the mean profile at the same elevation. For flow over SHSs with $k_{rms}^{+}<1$, drag reduction and an upward shift of the mean velocity profile occur, along with a mild increase in turbulence in the inner part of the boundary layer. As the roughness increases above $k_{rms}^{+}\sim 1$, the flow over the SHSs transitions from drag reduction, where the viscous stress dominates, to drag increase where the Reynolds shear stress becomes the primary contributor. For the present maximum value of $k_{rms}^{+}=3.28$, the inner region exhibits the characteristics of a rough wall boundary layer, including elevated wall friction and turbulence as well as a downward shift in the mean velocity profile. Increasing the pressure in the test facility to a level that compresses the air layer on the SHSs and exposes the protruding roughness elements reduces the extent of drag reduction. Aligning the roughness elements in the streamwise direction increases the drag reduction. For SHSs where the roughness effect is not dominant ($k_{rms}^{+}<1$), the present measurements confirm previous theoretical predictions of the relationships between drag reduction and slip velocity, allowing for both spanwise and streamwise slip contributions.


Sign in / Sign up

Export Citation Format

Share Document