The Implications for Building Ventilation of the Spatial and Temporal Variability of Air Temperature in the Urban Canopy Layer

2008 ◽  
Vol 7 (1) ◽  
pp. 23-35 ◽  
Author(s):  
T. Williamson ◽  
E. Erell
1998 ◽  
Vol 26 ◽  
pp. 487-492
Author(s):  
Hirohito KIRIHARA ◽  
Takeshi FUJINO ◽  
Takehiko MIKAMI

2021 ◽  
Vol 2 (1-4) ◽  
Author(s):  
Enea Montoli ◽  
Giuseppe Frustaci ◽  
Cristina Lavecchia ◽  
Samantha Pilati

2013 ◽  
Vol 13 (9) ◽  
pp. 4941-4961 ◽  
Author(s):  
C. Lac ◽  
R. P. Donnelly ◽  
V. Masson ◽  
S. Pal ◽  
S. Riette ◽  
...  

Abstract. Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI) with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH) have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m), leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL) growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A sensitivity test without urban parameterisation removes the UHI and underpredicts nighttime BLH over urban and suburban sites, leading to large overestimation of nocturnal CO2 mixing ratio at the suburban sites (bias of +17 ppm). The agreement between observation and prediction for BLH and CO2 concentrations and urban–rural increments, both day and night, demonstrates the potential of using the urban mesoscale system in the context of inverse modelling


2018 ◽  
Vol 51-52 (1) ◽  
pp. 37-45 ◽  
Author(s):  
János Unger ◽  
Nóra Skarbit ◽  
Tamás Gál

This part of the study on absolute moisture content in the mid-latitude urban canopy layer first gives a comparison on intra-urban relative and absolute humidity patterns showing an example based on a long dataset. The comparison clearly demonstrates the usefulness of the utilization of absolute measure opposite to the temperature dependent relative one. This supports the earlier statements found in the literature albeit these statements are based on only case studies or short datasets. Then a short overview follows which presents the main results of studies about urban absolute moisture content. These studies focused mainly on urban-rural and less on intra-urban humidity differences. The scale differences are used for the grouping of studies based on the number of available measurement sites as well as their spatial distribution and density in the investigated urban regions.


Sign in / Sign up

Export Citation Format

Share Document