Elastic, electronic and thermal properties of topological insulator SmB6: first-principles calculations

Author(s):  
Li Li ◽  
Cui-E Hu ◽  
Mei Tang ◽  
Yan Cheng ◽  
Guang-Fu Ji
2018 ◽  
Vol 27 (3) ◽  
pp. 037104 ◽  
Author(s):  
S Benlamari ◽  
H Bendjeddou ◽  
R Boulechfar ◽  
S Amara Korba ◽  
H Meradji ◽  
...  

2017 ◽  
Vol 901 ◽  
pp. 012031
Author(s):  
Chaiyawat Kaewmeechai ◽  
Yongyut Laosiritaworn ◽  
Atchara Punya Jaroenjittichai

2014 ◽  
Vol 28 (02) ◽  
pp. 1450008 ◽  
Author(s):  
JIAN-MIN ZHANG ◽  
WANGXIANG FENG ◽  
PEI YANG ◽  
LIJIE SHI ◽  
YING ZHANG

Using first-principles calculations, we systematically investigate the defect physics in topological insulator AuTlS 2. An optimal growth condition is explicitly proposed to guide for the experimental synthesis. The stabilities of various native point defects under different growth conditions and different carrier environments are studied in detail. We show that the p-type conductivity is strongly preferred in AuTlS 2, and the band gap can be engineered by the control of intrinsic defects. Our results demonstrate that AuTlS 2 is an ideal p-type topological insulator which can be easily integrated with traditional semiconductor.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hisao Nakamura ◽  
Johannes Hofmann ◽  
Nobuki Inoue ◽  
Sebastian Koelling ◽  
Paul M. Koenraad ◽  
...  

AbstractThe interface between topological and normal insulators hosts metallic states that appear due to the change in band topology. While topological states at a surface, i.e., a topological insulator-air/vacuum interface, have been studied intensely, topological states at a solid-solid interface have been less explored. Here we combine experiment and theory to study such embedded topological states (ETSs) in heterostructures of GeTe (normal insulator) and $$\hbox {Sb}_2$$ Sb 2 $$\hbox {Te}_3$$ Te 3 (topological insulator). We analyse their dependence on the interface and their confinement characteristics. First, to characterise the heterostructures, we evaluate the GeTe-Sb$$_2$$ 2 Te$$_3$$ 3 band offset using X-ray photoemission spectroscopy, and chart the elemental composition using atom probe tomography. We then use first-principles to independently calculate the band offset and also parametrise the band structure within a four-band continuum model. Our analysis reveals, strikingly, that under realistic conditions, the interfacial topological modes are delocalised over many lattice spacings. In addition, the first-principles calculations indicate that the ETSs are relatively robust to disorder and this may have practical ramifications. Our study provides insights into how to manipulate topological modes in heterostructures and also provides a basis for recent experimental findings [Nguyen et al. Sci. Rep. 6, 27716 (2016)] where ETSs were seen to couple over thick layers.


Sign in / Sign up

Export Citation Format

Share Document