The influence of gap losses on the optical, energy, and exergy efficiencies of the all-glassed evacuated tube compound parabolic concentrator (CPC) solar collectors

Author(s):  
Mehran Ameri ◽  
Hamed Torabi ◽  
Ighball Baniasad Askari
2016 ◽  
Vol 20 (1) ◽  
pp. 327-335 ◽  
Author(s):  
Farzad Jafarkazemi ◽  
Emad Ahmadifard ◽  
Hossein Abdi

In this paper, a heat pipe evacuated tube solar collector has been investigated both theoretically and experimentally. A detailed theoretical method for energy and exergy analysis of the collector is provided. The method is also evaluated by experiments. The results showed a good agreement between the experiment and theory. Using the theoretical model, the effect of different parameters on the collector?s energy and exergy efficiency has been investigated. It is concluded that inlet water temperature, inlet water mass flow rate, the transmittance of tubes and absorptance of the absorber surface have a direct effect on the energy and exergy efficiency of the heat pipe evacuated tube solar collector. Increasing water inlet temperature in heat pipe evacuated solar collectors leads to a decrease in heat transfer rate between the heat pipe?s condenser and water.


Author(s):  
Andy Walker ◽  
Fariborz Mahjouri ◽  
Robert Stiteler

This paper describes design, simulation, construction and measured initial performance of a solar water heating system (360 Evacuated Heat-Pipe Collector tubes, 54 m2 gross area, 36 m2 net absorber area) installed at the top of the hot water recirculation loop in the Social Security Mid-Atlantic Center in Philadelphia. Water returning to the hot water storage tank is heated by the solar array when solar energy is available. This new approach, as opposed to the more conventional approach of preheating incoming water, is made possible by the thermal diode effect of heat pipes and low heat loss from evacuated tube solar collectors. The simplicity of this approach and its low installation costs makes the deployment of solar energy in existing commercial buildings more attractive, especially where the roof is far removed from the water heating system, which is often in the basement. Initial observed performance of the system is reported. Hourly simulation estimates annual energy delivery of 111 GJ/year of solar heat and that the annual efficiency (based on the 54 m2 gross area) of the solar collectors is 41%, and that of the entire system including parasitic pump power, heat loss due to freeze protection, and heat loss from connecting piping is 34%. Annual average collector efficiency based on a net aperture area of 36 m2 is 61.5% according to the hourly simulation.


2016 ◽  
Vol 91 ◽  
pp. 477-485 ◽  
Author(s):  
Mario Nájera-Trejo ◽  
Ignacio R. Martin-Domínguez ◽  
Jorge A. Escobedo-Bretado

2012 ◽  
Vol 7 (3) ◽  
pp. 114-130 ◽  
Author(s):  
S. E. Zubriski ◽  
K. J. Dick

The operating efficiency of evacuated tubes themselves under varying environmental conditions and installation scenarios, independent of water and space heating auxiliary equipment, are not readily available values. Further, Manitoba specific data has not been established. The purpose of this research program was to measure the efficiency of evacuated tube solar collectors under various operating conditions including: the angle of inclination towards the incident solar radiation, heat transfer fluid flow rate, glazing installation, and number of evacuated tubes. The operating conditions and configurations were chosen to represent realistic or probable installation scenarios and environmental conditions. Furthermore, the research aimed to identify the suitability of evacuated tube solar collectors to each of the scenarios. These design values are of use for appropriate sizing of water or space heating systems, system configuration and optimization, and calculation of return on investment. The scope of the research project was limited to the efficiency of various configurations of a 32-tube panel, not the entire solar domestic hot water or space heating system. Thus, factors such as heat loss in the tubing, solar storage tank, and heat exchanger efficiency were not investigated. The findings indicated that efficiency varied by approximately 5% between the different collector configurations, as observed from the overlay graph of results. When the efficiency of a collector is considered within a system it is proposed that effectiveness may be a better measure of overall performance.


Author(s):  
Muneesh Sethi ◽  
R.K. Tripathi ◽  
Birajashis Pattnaik ◽  
Sushil Kumar ◽  
Rohit Khargotra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document