The Role of Litter in Rainfall Interception and Maintenance of Superficial Soil Water Content in an Arid Rangeland in Khabr National Park in South-Eastern Iran

2010 ◽  
Vol 24 (3) ◽  
pp. 213-222 ◽  
Author(s):  
Mohsen Sharafatmandrad ◽  
Mansour Mesdaghi ◽  
Abdolreza Bahremand ◽  
Hossein Barani
2020 ◽  
Author(s):  
Yu Zhang ◽  
Xiaoyan Li ◽  
Wei Li ◽  
Weiwei Fang ◽  
Fangzhong Shi

<p>Shrub is the main vegetation type for vegetation restoration in the Loess Plateau, which plays an important role in the regional ecosystem restoration. Study on the relationships between vegetation and soil water of typical shrub ecosystems are significant for the restoration and reconstruction of ecosystems in the Loess Plateau. Three typical shrub (<em>Hippophae rhamnoides</em> Linn., <em>Spiraea pubescens</em> Turcz., and <em>Caragana korshinskii</em> Kom.) ecosystems were chosen in the Loess Plateau. Field experiments were conducted to investigate the factors that influencing the processes of rainfall interception and root uptake of typical shrubs. S-Biome-BGC model was established based on the Biome-BGC model by developing the rainfall interception and soil water movement sub-models. The model was calibrated and verified using field data. The calibrated S-Biome-BGC model was used to simulate the characteristics of leaf area index (<em>LAI</em>), net primary productivity (<em>NPP</em>), soil water content and the interactions among them for the shrub ecosystems along the precipitation gradients in the Loess Plateau, respectively. The results showed that the predictions of the S-Biome-BGC model for soil water content and<em> LAI</em> of typical shrub ecosystems in Loess Plateau were significantly more accurate than that of Biome-BGC model. The simulated <em>RMSE</em> of soil water content decreased from 0.040~0.130 cm<sup>3</sup> cm<sup>-3</sup> to 0.026~0.035 cm<sup>3</sup> cm<sup>-3</sup>, and the simulated <em>RMSE</em> of<em> LAI</em> decreased from 0.37~0.70 m<sup>2</sup> m<sup>-2</sup> to 0.35~0.37 m<sup>2</sup> m<sup>-2</sup>. Therefore, the S-Biome-BGC model can reflect the interaction between plant growth and soil water content in the shrub ecosystems of the Loess Plateau. The S-Biome-BGC model simulation for <em>LAI</em>,<em> NPP</em> and soil water content of the three typical shrubs were significantly different along the precipitation gradients, and increased with annual precipitation together. However, different <em>LAI</em>, <em>NPP</em> and soil water correlations were found under different precipitation gradients.<em> LAI</em> and<em> NPP</em> have significant positive correlations with soil water content in the areas where the annual precipitation is above 460~500 mm that could afford the shrubs growth. The results of the study provide a re-vegetation threshold to guide future re-vegetation activities in the Loess Plateau.</p>


2021 ◽  
Author(s):  
Christine Fischer ◽  
Murray Lark ◽  
Johanna C. Metzger ◽  
Thomas Wutzler ◽  
Anke Hildebrandt

<div> <p>This study investigates whether and how vegetation cover affects the spatial heterogeneity and vertical penetration of water through the Upper Critical Zone (UCZ). We assessed rainfall, throughfall and soil water contents on a 1‐ha temperate mixed beech forest plot in Germany. Throughfall and soil water content in two depths (7.5 cm and 27.5 cm) were measured on an event basis during the 2015 - 2016 growing season in independent high‐resolution stratified random designs. We calculated the increase of soil water content (Δθ) due to the rainfall by the difference between measurements at the beginning (pre-event) and the maximum soil water content after the end of rainfall event (post-event). Since throughfall and soil water content cannot be assessed at the same location, we used kriging to derive the throughfall values at the locations where soil water content was measured. We explore the spatial variation and temporal stability of throughfall and soil water content and evaluate the effects of throughfall, soil properties (field capacity and air capacity), and vegetation parameters (next tree distance) on soil water content variability.</p> <p>Throughfall patterns were related to canopy density although correlation length decreased with increasing event size. Temporal stability was high, leading to persistently high and lower input locations across rainfall events.</p> <p>A linear mixed effect model analysis confirmed that the soil water content increase due to precipitation depended on throughfall patterns, in that more water was stored in the soil where throughfall was enhanced. This was especially the case in large events and in both investigated soil depths. However, we also identified additional factors that enhanced or decreased water storage in the soil, and probably indicate fast drainage and runoff components. Locations with low topsoil water content tended to store less of the available water, indicating the role of preferential flow. In contrast in subsoil, locations with high water content, and probably poor drainage, stored less water, indicating lateral flow. Also, distance to the next tree and air capacity modified soil water storage.</p> <p>Spatial soil water content patterns shortly before a rainfall event (pre-event conditions) seem to be a key factor in soil water content increase, and also explained much of soil water content shortly after the rainfall event. Pre-event soil water content was mostly driven by random local effects, probably microtopography and root water uptake, which were not quantified in this study. The remaining spatial variation was explained by air capacity in both soil layers, indicating the role of macroporosity.</p> <p>Our findings show at the same time systematic patterns of times and locations where the soil capacity to store water is reduced and water probably conducted quickly to greater depth. Not only soil moisture patterns but also deeper percolation may depend on small scale spatial heterogeneity of canopy input patterns.</p> </div>


2017 ◽  
Vol 14 (18) ◽  
pp. 4195-4208 ◽  
Author(s):  
Sílvia Poblador ◽  
Anna Lupon ◽  
Santiago Sabaté ◽  
Francesc Sabater

Abstract. Riparian zones play a fundamental role in regulating the amount of carbon (C) and nitrogen (N) that is exported from catchments. However, C and N removal via soil gaseous pathways can influence local budgets of greenhouse gas (GHG) emissions and contribute to climate change. Over a year, we quantified soil effluxes of carbon dioxide (CO2) and nitrous oxide (N2O) from a Mediterranean riparian forest in order to understand the role of these ecosystems on catchment GHG emissions. In addition, we evaluated the main soil microbial processes that produce GHG (mineralization, nitrification, and denitrification) and how changes in soil properties can modify the GHG production over time and space. Riparian soils emitted larger amounts of CO2 (1.2–10 g C m−2 d−1) than N2O (0.001–0.2 mg N m−2 d−1) to the atmosphere attributed to high respiration and low denitrification rates. Both CO2 and N2O emissions showed a marked (but antagonistic) spatial gradient as a result of variations in soil water content across the riparian zone. Deep groundwater tables fueled large soil CO2 effluxes near the hillslope, while N2O emissions were higher in the wet zones adjacent to the stream channel. However, both CO2 and N2O emissions peaked after spring rewetting events, when optimal conditions of soil water content, temperature, and N availability favor microbial respiration, nitrification, and denitrification. Overall, our results highlight the role of water availability on riparian soil biogeochemistry and GHG emissions and suggest that climate change alterations in hydrologic regimes can affect the microbial processes that produce GHG as well as the contribution of these systems to regional and global biogeochemical cycles.


2001 ◽  
Vol 52 (5) ◽  
pp. 587 ◽  
Author(s):  
D. M. Whitfield

The management of ground water recharge in south-eastern Australia relies on the formulation of agricultural practices that utilise rainfall before it moves below the root-zone. Annual cycles of soil water content were therefore measured in a red-brown earth subjected to 5 fallow-free crop sequences, to 2 crop sequences that included fallow, and to 3 pastures. Changes in soil water content induced by wheat, barley, lupin, pea, safflower, canola, and fallow were compared with those of annual pasture and 2 monocultures of the deep-rooted perennials phalaris and lucerne in 3 years of study. Mean minimum soil water content (0–1.6 m) seen in December and May was approximately 355 mm in lucerne and phalaris, 410 mm in annuals (crops and pasture), and 475 mm in fallow. Corresponding soil water deficits appropriate to lucerne, annuals, and fallow were 185, 135, and 65 mm, respectively. Lucerne and annuals both removed approximately 85 mm water from the upper 0.6 m of the soil profile. Differences arose in the subsoil below 0.6 m, where lucerne, annuals, and fallow produced soil water deficits of approximately 100, 50, and 25 mm, respectively. The difference in soil water deficit of deep-rooted perennials and annuals was therefore caused by the extra 50 mm of water extracted by lucerne and phalaris below 0.6 m in the period September–December. The dry subsoil endured through summer to promote the storage, by soil, of rainfall in winter. The data suggest that the spatial utility of an agronomic recharge control option in south-eastern Australia depends on the magnitude of the soil water deficit associated with the vegetation. The soil water deficit, relative to winter (May–August) rainfall, discriminates between areas where annuals suffice for recharge control, where lucerne and phalaris are required for recharge control, and where agronomic annuals and perennials are both conducive to high rates of drainage.


2021 ◽  
pp. 121-137
Author(s):  
Antti Halla ◽  
Nathaniel Narra ◽  
Tarmo Lipping

2020 ◽  
Author(s):  
Itamar Shabtai ◽  
Srabani Das ◽  
Thiago Inagaki ◽  
Ingrid Kogel-Knabner ◽  
Johannes Lehmann

<p>Organo-mineral interactions stabilize soil organic matter (SOM) by protecting from microbial enzymatic attack. Soil water content affects aggregation, mineral weathering, and microbial respiration, thus influencing the relative importance of SOM stabilization mechanisms. While the response of microbial respiration to momentary changes in water content is well established, it is unclear how microbial activity will impact stabilization mechanisms under different long-term moisture contents.</p><p>To understand how long-term soil moisture affects SOM stabilization mechanisms we studied fallow soils from upstate New York situated on a naturally occurring water content gradient. Wetter (but not saturated) soils contained more exchangeable Ca and had more strongly stabilized SOM, resulting in SOM accumulation. But it was not clear whether Ca-driven surface interactions or occlusion in micro-aggregates was more important, and if interactions with Fe and Al played a role in the Ca-poor soils. Also, the role of biotic drivers in SOM stabilization at different water contents was unknown.</p><p>We tested which mechanisms governed SOM stabilization by determining C and N contents and natural isotope abundances in particulate and mineral-associated organic matter fractions. We also extracted the C bound to Ca and to reactive Fe+Al phases. Wetter, Ca-rich soils had higher oPOM content, and in the heavy mineral fraction, higher relative concentrations of Ca-bound C, lower C:N values, and more oxidized C forms. In addition, wetter soils had greater microbial biomass. Together, these results showed that high long-term soil moisture increased microbial SOM cycling, and that processed SOM was better stabilized, in agreement with the recent notion that stable SOM consists of processed labile C. Additionally, higher soil moisture augmented the role of Ca in SOM stabilization over that of Al+Fe phases. We then manipulated the exchangeable Ca content and incubated soils with <sup>13</sup>C<sup>15</sup>N labeled plant litter. Ca-amended soils emitted less CO<sub>2 </sub>while incubated with litter, confirming that Ca is instrumental in SOM stabilization. Tracing the labeled isotopes in the gaseous phase and soil fractions will allow us to gain a clearer understanding of how water content and soil Ca interact to stabilize SOM.  </p>


Sign in / Sign up

Export Citation Format

Share Document