A New Hybrid Computational Framework and Validations for Handling Steady-State Problems with Contact Boundaries

2012 ◽  
Vol 19 (1-3) ◽  
pp. 144-168 ◽  
Author(s):  
X. Zhou ◽  
D. Sha ◽  
K. K. Tamma
Author(s):  
Juri Bellucci ◽  
Filippo Rubechini ◽  
Andrea Arnone

This paper describes some experiences about impact of unsteadiness in turbine flows, with a special focus on the effects of potential interaction on aerodynamic performance. The main motivation consists in trying to identify some design areas in which some further margins of improvement could be found, provided the designer chooses the proper computational framework. The underlying idea is that the approximations associated with the steady-state picture of a turbine stage might prevent the designer from unlocking the full potential of the stage, especially when the design requirements imply a challenging aerodynamics. To this end, three common design topics are presented in which the step from the classical steady-state approach to the time-accurate one unveils relevant issues, which in turn have an impact on aerodynamic performance: stator/rotor interaction in transonic stages, the choice of the axial gap between stator and rotor, and the choice of the blade count ratio. In all reported cases, significant departures are found between steady and time-averaged results, and the basic fluid mechanisms responsible for them are examined. In particular, an attempt is made to emphasize limitations deriving from of the steady-state picture of the turbine flow field, in order to warn the designer about the possible traps of the steady-state assumption.


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


2021 ◽  
Author(s):  
Wu Lan ◽  
Yuan Peng Du ◽  
Songlan Sun ◽  
Jean Behaghel de Bueren ◽  
Florent Héroguel ◽  
...  

We performed a steady state high-yielding depolymerization of soluble acetal-stabilized lignin in flow, which offered a window into challenges and opportunities that will be faced when continuously processing this feedstock.


2008 ◽  
Vol 45 ◽  
pp. 161-176 ◽  
Author(s):  
Eduardo D. Sontag

This paper discusses a theoretical method for the “reverse engineering” of networks based solely on steady-state (and quasi-steady-state) data.


1979 ◽  
Vol 1 (4) ◽  
pp. 13-24
Author(s):  
E. Dahi ◽  
E. Lund
Keyword(s):  

2002 ◽  
Vol 16 (2) ◽  
pp. 71-81 ◽  
Author(s):  
Caroline M. Owen ◽  
John Patterson ◽  
Richard B. Silberstein

Summary Research was undertaken to determine whether olfactory stimulation can alter steady-state visual evoked potential (SSVEP) topography. Odor-air and air-only stimuli were used to determine whether the SSVEP would be altered when odor was present. Comparisons were also made of the topographic activation associated with air and odor stimulation, with the view toward determining whether the revealed topographic activity would differentiate levels of olfactory sensitivity by clearly identifying supra- and subthreshold odor responses. Using a continuous respiration olfactometer (CRO) to precisely deliver an odor or air stimulus synchronously with the natural respiration, air or odor (n-butanol) was randomly delivered into the inspiratory airstream during the simultaneous recording of SSVEPs and subjective behavioral responses. Subjects were placed in groups based on subjective odor detection response: “yes” and “no” detection groups. In comparison to air, SSVEP topography revealed cortical changes in response to odor stimulation for both response groups, with topographic changes evident for those unable to perceive the odor, showing the presence of a subconscious physiological odor detection response. Differences in regional SSVEP topography were shown for those who reported smelling the odor compared with those who remained unaware of the odor. These changes revealed olfactory modulation of SSVEP topography related to odor awareness and sensitivity and therefore odor concentration relative to thresholds.


Sign in / Sign up

Export Citation Format

Share Document