scholarly journals Prolyl endopeptidase inhibitor Y-29794 blocks the IRS1-AKT-mTORC1 pathway and inhibits survival and in vivo tumor growth of triple-negative breast cancer

2020 ◽  
Vol 21 (11) ◽  
pp. 1033-1040
Author(s):  
Ricardo E Perez ◽  
Sarah Calhoun ◽  
Daeun Shim ◽  
Victor V. Levenson ◽  
Lei Duan ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia M. Saraiva ◽  
Carlha Gutiérrez-Lovera ◽  
Jeannette Martínez-Val ◽  
Sainza Lores ◽  
Belén L. Bouzo ◽  
...  

AbstractTriple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells’ proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.


2020 ◽  
Vol 6 (8) ◽  
pp. eaaw9960 ◽  
Author(s):  
Yuanyuan Qin ◽  
Weilong Chen ◽  
Guojuan Jiang ◽  
Lei Zhou ◽  
Xiaoli Yang ◽  
...  

Triple-negative breast cancer (TNBC) is life-threatening because of limited therapies and lack of effective therapeutic targets. Here, we found that moesin (MSN) was significantly overexpressed in TNBC compared with other subtypes of breast cancer and was positively correlated with poor overall survival. However, little is known about the regulatory mechanisms of MSN in TNBC. We found that MSN significantly stimulated breast cancer cell proliferation and invasion in vitro and tumor growth in vivo, requiring the phosphorylation of MSN and a nucleoprotein NONO-assisted nuclear localization of phosphorylated MSN with protein kinase C (PKC) and then the phosphorylation activation of CREB signaling by PKC. Our study also demonstrated that targeting MSN, NONO, or CREB significantly inhibited breast tumor growth in vivo. These results introduce a new understanding of MSN function in breast cancer and provide favorable evidence that MSN or its downstream molecules might serve as new targets for TNBC treatment.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3145
Author(s):  
Veronica Vella ◽  
Marika Giuliano ◽  
Alessandro La Ferlita ◽  
Michele Pellegrino ◽  
Germano Gaudenzi ◽  
...  

The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis.


2019 ◽  
Author(s):  
Leonard Lothstein ◽  
Judith Ellen Soberman ◽  
Deanna Parke ◽  
Jatin Gandhi ◽  
Trevor Sweatman ◽  
...  

Abstract Background: Triple-negative breast cancer (TNBC) is unresponsive to anti-estrogen and anti-HER2 therapies, requiring the use of cytotoxic drug combinations of anthracyclines, taxanes, cyclophosphamide and platinum compounds. Multidrug therapies achieve pathological cure rates of only 20-40%, a consequence of drug resistance and cumulative dose limitations necessitated by the irreversible cardiotoxic effects of anthracyclines and other cytotoxic agents. Safer and more effective treatments for TNBC are required to achieve durable therapeutic responses. This study describes the mechanism of action and in vivo efficacy of pivarubicin, a structurally and functionally novel anthracycline, to determine whether pivarubicin is potentially more effective and safer than doxorubicin against human primary TNBC. Methods: Hydrolytic stability, mechanism and ability of pivarubicin to circumvent mechanisms of resistance are tested in multiple tumor lines through modulation of PKC-delta activity and assessment of drug cytotoxicity. Comparative in vivo efficacy is tested in an orthotopic NSG mouse model implanted with MDA-MB-231 human TNBC cells and treated with the maximum tolerated doses of pivarubicin and doxorubicin, followed by monitoring of tumor growth by digital caliper measurements and determination of endpoint tumor weight and volume. Endpoint cardiotoxicity is assessed histologically by identifying microvacuolization in ventricular cardiomyocytes. Results: The trimethylester moiety of pivarubicin confers hydrolytic stability relative to the closely related congener, AD 198, but retains the ability of other N -alkylbenzyladriamycin compounds to directly activate PKC-delta and trigger rapid mitochondrial-dependent apoptosis. The structure and function of pivarubicin permits circumvention of resistance conferred by overexpression of P-glycoprotein, Bcl-2, Bcl-X L and Bcr-Abl. Primary tumors treated with the multiple rounds of the maximum tolerated dose (MTD) of doxorubicin failed to inhibit tumor growth compared with vehicle-treated tumors. However, administration of a single MTD of pivarubicin produced significant inhibition of tumor growth and tumor regression relative to tumor volume prior to initiation of treatment. Histological analysis of hearts excised from drug- and vehicle-treated mice revealed that pivarubicin produced no evidence of myocardial damage at this therapeutic dose. Conclusion: These results support the development of pivarubicin as a safer and more effective replacement for doxorubicin against TNBC as well as other malignancies for which doxorubicin therapy is indicated.


Author(s):  
Jihyun Park ◽  
Moises J. Tacam ◽  
Gaurav Chauhan ◽  
Evan N. Cohen ◽  
Maria Gagliardi ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that lacks targeted therapies. Patients with TNBC have a very poor prognosis because the disease often metastasizes. New treatment approaches addressing drivers of metastasis and tumor growth are crucial to improving patient outcomes. Developing targeted gene therapy is thus a high priority for TNBC patients. PEA15 (phosphoprotein enriched in astrocytes, 15 kDa) is known to bind to ERK, preventing ERK from being translocated to the nucleus and hence blocking its activity. The biological function of PEA15 is tightly regulated by its phosphorylation at Ser104 and Ser116. However, the function and impact of phosphorylation status of PEA15 in the regulation of TNBC metastasis and in epithelial-to-mesenchymal transition (EMT) are not well understood. Methods We established stable cell lines overexpressing nonphosphorylatable (PEA15-AA) and phospho-mimetic (PEA15-DD) mutants. To dissect specific cellular mechanisms regulated by PEA15 phosphorylation status, we performed RT-PCR immune and metastasis arrays. In vivo mouse models were used to determine the effects of PEA15 phosphorylation on tumor growth and metastasis. Results We found that the nonphosphorylatable mutant PEA15-AA prevented formation of mammospheres and expression of EMT markers in vitro and decreased tumor growth and lung metastasis in in vivo experiments when compared to control, PEA15-WT and phosphomimetic PEA15-DD. However, phosphomimetic mutant PEA15-DD promoted migration, mesenchymal marker expression, tumorigenesis, and lung metastasis in the mouse model. PEA15-AA-mediated inhibition of breast cancer cell migratory capacity and tumorigenesis was the partial result of decreased expression of interleukin-8 (IL-8). Further, we identified that expression of IL-8 was possibly mediated through one of the ERK downstream molecules, Ets-1. Conclusions Our results show that PEA15 phosphorylation status serves as an important regulator for PEA15’s dual role as an oncogene or tumor suppressor and support the potential of PEA15-AA as a therapeutic strategy for treatment of TNBC.


Author(s):  
Janice García-Quiroz ◽  
Nohemí Cárdenas-Ochoa ◽  
Rocío García-Becerra ◽  
Gabriela Morales-Guadarrama ◽  
Edgar A. Méndez-Pérez ◽  
...  

Chemotherapy is a standard therapeutic option for triple-negative breast cancer (TNBC); however, its effectiveness is often compromised by drug-related toxicity and resistance development. Herein, we aimed to evaluate whether an improved antineoplastic effect could be achieved in vitro and in vivo in TNBC by combining dovitinib, a multi-kinase inhibitor, with calcitriol, a natural anti-cancer hormone. In vitro, cell proliferation and cell-cycle distribution were studied by sulforhodamine B-assays and flow cytometry. In vivo, dovitinib/calcitriol effects on tumor growth, angiogenesis and endothelium activation were evaluated in xenografted mice by caliper measures, Itgb3-immunohistochemistry and 99mTc-RGD2-tumor uptake. The drug combination elicited a synergistically improved antiproliferative effect in TNBC-derived cells, which allowed a 7-fold dovitinib dose-reduction. Mechanistically, the co-treatment induced cell death and accumulation in S and G2/M phases, while inhibited tumor growth to a greater extent than each compound alone. Tumor uptake of 99mTc-RGD2 was reduced by dovitinib, suggesting angiogenesis inhibition, which was corroborated by decreased endothelial cell growth and tumor vessel density. In summary, calcitriol synergized dovitinib anticancer effects in vitro and in vivo, allowing for a significant dose-reduction of dovitinib, while maintaining its antiproliferative potency. Our results suggest the beneficial convergence of independent antitumor mechanisms of dovitinib and calcitriol to inhibit TNBC-tumor growth.


Author(s):  
Leonard Lothstein ◽  
Judith Soberman ◽  
Deanna Parke ◽  
Jatin Gandhi ◽  
Trevor Sweatman ◽  
...  

Triple-negative breast cancer (TNBC) is unresponsive to antiestrogen and anti-HER2 therapies, requiring the use of cytotoxic drug combinations of anthracyclines, taxanes, cyclophosphamide, and platinum compounds. Multidrug therapies achieve pathological cure rates of only 2040%, a consequence of drug resistance and cumulative dose limitations necessitated by the reversible cardiotoxic effects of drug therapy. Safer and more effective treatments for TNBC are required to achieve durable therapeutic responses. This study describes the mechanistic analyses of the novel anthracycline, pivarubicin, and its in vivo efficacy against human primary TNBC. Pivarubicin directly activates PKCd, triggers rapid mitochondrial-dependent apoptosis, and circumvents resistance conferred by overexpression of P-glycoprotein, Bcl-2, Bcl-XL, and Bcr-Abl. As a consequence, pivarubicin is more cytotoxic than doxorubicin against MDA-MB-231, and SUM159 TNBC cell lines grown in both monolayer culture and tumorspheres. Comparative in vivo efficacy of pivarubicin and doxorubicin was performed in an orthotopic NSG mouse model implanted with MDA-MB-231 human TNBC cells and treated with the maximum tolerated doses (MTDs) of pivarubicin and doxorubicin. Tumor growth was monitored by digital caliper measurements and determination of endpoint tumor weight and volume. Endpoint cardiotoxicity was assessed histologically by identifying microvacuolization in ventricular cardiomyocytes. Primary tumors treated with multiple rounds of doxorubicin at MTD failed to inhibit tumor growth compared with vehicle-treated tumors. However, administration of a single MTD of pivarubicin produced significant inhibition of tumor growth and tumor regression relative to tumor volume prior to initiation of treatment. Histological analysis of hearts excised from drug- and vehicle-treated mice revealed that pivarubicin produced no evidence of myocardial damage at a therapeutic dose. These results support the development of pivarubicin as a safer and more effective replacement for doxorubicin against TNBC as well as other malignancies for which doxorubicin therapy is indicated.


Sign in / Sign up

Export Citation Format

Share Document