scholarly journals Five transcriptional factors reprogram fibroblast into myogenic lineage cells via paraxial mesoderm stage

Cell Cycle ◽  
2020 ◽  
Vol 19 (14) ◽  
pp. 1804-1816
Author(s):  
Meeyul Hwang ◽  
Eun-Joo Lee ◽  
Myung-Jin Chung ◽  
SunYoung Park ◽  
Kyu-Shik Jeong
Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 785-796 ◽  
Author(s):  
B.A. Williams ◽  
C.P. Ordahl

Specification of the myogenic lineage begins prior to gastrulation and culminates in the emergence of determined myogenic precursor cells from the somites. The myoD family (MDF) of transcriptional activators controls late step(s) in myogenic specification that are closely followed by terminal muscle differentiation. Genes expressed in myogenic specification at stages earlier than MDFs are unknown. The Pax-3 gene is expressed in all the cells of the caudal segmental plate, the early mesoderm compartment that contains the precursors of skeletal muscle. As somites form from the segmental plate and mature, Pax-3 expression is progressively modulated. Beginning at the time of segmentation, Pax-3 becomes repressed in the ventral half of the somite, leaving Pax-3 expression only in the dermomyotome. Subsequently, differential modulation of Pax-3 expression levels delineates the medial and lateral halves of the dermomyotome, which contain precursors of axial (back) muscle and limb muscle, respectively. Pax-3 expression is then repressed as dermomyotome-derived cells activate MDFs. Quail-chick chimera and ablation experiments confirmed that the migratory precursors of limb muscle continue to express Pax-3 during migration. Since limb muscle precursors do not activate MDFs until 2 days after they leave the somite, Pax-3 represents the first molecular marker for this migratory cell population. A null mutation of the mouse Pax-3 gene, Splotch, produces major disruptions in early limb muscle development (Franz, T., Kothary, R., Surani, M. A. H., Halata, Z. and Grim, M. (1993) Anat. Embryol. 187, 153–160; Goulding, M., Lumsden, A. and Paquette, A. (1994) Development 120, 957–971). We conclude, therefore, that Pax-3 gene expression in the paraxial mesoderm marks earlier stages in myogenic specification than MDFs and plays a crucial role in the specification and/or migration of limb myogenic precursors.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 126
Author(s):  
Jiangyuan Han ◽  
Yanlin Ma ◽  
Lan Ma ◽  
Daquan Tan ◽  
Hongxia Niu ◽  
...  

Long-lived memory cell formation and maintenance are usually regulated by cytokines and transcriptional factors. Adjuvant effects of IL-7 have been studied in the vaccines of influenza and other pathogens. However, few studies investigated the adjuvant effects of cytokines and transcriptional factors in prolonging the immune memory induced by a tuberculosis (TB) subunit vaccine. To address this research gap, mice were treated with the Mycobacterium tuberculosis (M. tuberculosis) subunit vaccine Mtb10.4-HspX (MH) plus ESAT6-Ag85B-MPT64<190–198>-Mtb8.4-Rv2626c (LT70), together with adeno-associated virus-mediated IL-7 or lentivirus-mediated transcriptional factor Id3, Bcl6, Bach2, and Blimp1 at 0, 2, and 4 weeks, respectively. Immune responses induced by the vaccine were examined at 25 weeks after last immunization. The results showed that adeno-associated virus-mediated IL-7 allowed the TB subunit vaccine to induce the formation of long-lived memory T cells. Meanwhile, IL-7 increased the expression of Id3, Bcl6, and bach2—the three key transcription factors for the generation of long-lived memory T cells. The adjuvant effects of transcriptional factors, together with TB fusion protein MH/LT70 vaccination, showed that both Bcl6 and Id3 increased the production of antigen-specific antibodies and long-lived memory T cells, characterized by high proliferative potential of antigen-specific CD4+ and CD8+ T cells, and IFN-γ secretion in CD4+ and CD8+ T cells, respectively, after re-exposure to the same antigen. Overall, our study suggests that IL-7 and transcriptional factors Id3 and Bcl6 help the TB subunit vaccine to induce long-term immune memory, which contributes to providing immune protection against M. tuberculosis infection.


2000 ◽  
Vol 95 (1-2) ◽  
pp. 23-34 ◽  
Author(s):  
Johannes Beckers ◽  
Alicia Caron ◽  
Martin Hrabé de Angelis ◽  
Stefan Hans ◽  
José A. Campos-Ortega ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document