Synthesis of aromatic liquid crystal π-conjugated copolymers bearing three-ring pyrimidine-based mesogens, and optical texture observations

Author(s):  
Roan Ito ◽  
Hiromasa Goto
Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 81
Author(s):  
Hassanein Shaban ◽  
Shih-Chun Yen ◽  
Mon-Juan Lee ◽  
Wei Lee

An optical and dielectric biosensor based on a liquid crystal (LC)–photopolymer composite was established in this study for the detection and quantitation of bovine serum albumin (BSA). When the nematic LC E7 was doped with 4-wt.% NOA65, a photo-curable prepolymer, and photopolymerized by UV irradiation at 20 mW/cm2 for 300 s, the limit of detection determined by image analysis of the LC optical texture and dielectric spectroscopic measurements was 3400 and 88 pg/mL for BSA, respectively, which were lower than those detected with E7 alone (10 μg/mL BSA). The photopolymerized NOA65, but not the prepolymer prior to UV exposure, contributed to the enhanced optical signal, and UV irradiation of pristine E7 in the absence of NOA65 had no effect on the optical texture. The effective tilt angle θ, calculated from the real-part dielectric constant ε’, decreased with increasing BSA concentration, providing strong evidence for the correlation of photopolymerized NOA65 to the intensified disruption in the vertically oriented LC molecules to enhance the optical and dielectric signals of BSA. The optical and dielectric anisotropy of LCs and the photo-curable dopant facilitate novel quantitative and signal amplification approaches to potential development of LC-based biosensors.


2016 ◽  
Vol 50 ◽  
pp. 1-6
Author(s):  
Yuki Kudo ◽  
Hiromasa Goto

Hydroxypropyl cellulose (HPC) as a cholesteric liquid crystal was coloured with purple ink from Dolabella auricularia as a sea hare. Optical texture of the liquid crystal mixture was confirmed with a polarising optical microscope.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2854
Author(s):  
José Frazão ◽  
Susana I. C. J. Palma ◽  
Henrique M. A. Costa ◽  
Cláudia Alves ◽  
Ana C. A. Roque ◽  
...  

Liquid crystal (LC)-based materials are promising platforms to develop rapid, miniaturised and low-cost gas sensor devices. In hybrid gel films containing LC droplets, characteristic optical texture variations are observed due to orientational transitions of LC molecules in the presence of distinct volatile organic compounds (VOC). Here, we investigate the use of deep convolutional neural networks (CNN) as pattern recognition systems to analyse optical textures dynamics in LC droplets exposed to a set of different VOCs. LC droplets responses to VOCs were video recorded under polarised optical microscopy (POM). CNNs were then used to extract features from the responses and, in separate tasks, to recognise and quantify the vapours exposed to the films. The impact of droplet diameter on the results was also analysed. With our classification models, we show that a single individual droplet can recognise 11 VOCs with small structural and functional differences (F1-score above 93%). The optical texture variation pattern of a droplet also reflects VOC concentration changes, as suggested by applying a regression model to acetone at 0.9–4.0% (v/v) (mean absolute errors below 0.25% (v/v)). The CNN-based methodology is thus a promising approach for VOC sensing using responses from individual LC-droplets.


Author(s):  
K.J. Ihn ◽  
R. Pindak ◽  
J. A. N. Zasadzinski

A new liquid crystal (called the smectic-A* phase) that combines cholesteric twist and smectic layering was a surprise as smectic phases preclude twist distortions. However, the twist grain boundary (TGB) model of Renn and Lubensky predicted a defect-mediated smectic phase that incorporates cholesteric twist by a lattice of screw dislocations. The TGB model for the liquid crystal analog of the Abrikosov phase of superconductors consists of regularly spaced grain boundaries of screw dislocations, parallel to each other within the grain boundary, but rotated by a fixed angle with respect to adjacent grain boundaries. The dislocations divide the layers into blocks which rotate by a discrete amount, Δθ, given by the ratio of the layer spacing, d, to the distance between grain boundaries, lb; Δθ ≈ d/lb (Fig. 1).


Author(s):  
B.D. Terris ◽  
R. J. Twieg ◽  
C. Nguyen ◽  
G. Sigaud ◽  
H. T. Nguyen

We have used a force microscope in the attractive, or noncontact, mode to image a variety of surfaces. In this mode, the microscope tip is oscillated near its resonant frequency and shifts in this frequency due to changes in the surface-tip force gradient are detected. We have used this technique in a variety of applications to polymers, including electrostatic charging, phase separation of ionomer surfaces, and crazing of glassy films.Most recently, we have applied the force microscope to imaging the free surfaces of chiral liquid crystal films. The compounds used (Table 1) have been chosen for their polymorphic variety of fluid mesophases, all of which exist within the temperature control range of our force microscope.


Author(s):  
V.A. Munoz ◽  
R.J. Mikula ◽  
C. Payette ◽  
W.W. Lam

The transformation of high molecular weight components present in heavy oils into useable liquid fuels requires their decomposition by means of a variety of processes. The low molecular weight species produced recombine under controlled conditions to generate synthetic fuels. However, an important fraction undergo further recombination into higher molecular weight components, leading to the formation of coke. The optical texture of the coke can be related to its originating components. Those with high sulfur and oxygen content tend to produce cokes with small optical texture or fine mosaic, whereas compounds with relatively high hydrogen content are likely to produce large optical texture or domains. In addition, the structure of the parent chemical components, planar or nonplanar, determines the isotropic or anisotropic character of the coke. Planar molecules have a tendency to align in an approximately parallel arrangement to initiate the formation of the nematic mesophase leading to the formation of anisotropic coke. Nonplanar highly alkylated compounds and/or those rich in polar groups form isotropic coke. The aliphatic branches produce steric hindrance to alignment, whereas the polar groups participate in cross-linking reactions.


Sign in / Sign up

Export Citation Format

Share Document