Experimental investigations on a forced convection solar air heater using packed bed absorber plates with phase change materials

2017 ◽  
Vol 14 (15) ◽  
pp. 1238-1255 ◽  
Author(s):  
R. Arul Kumar ◽  
B. Ganesh Babu ◽  
M. Mohanraj
Author(s):  
Bashar K Mahmoud ◽  
Sulafa I Ibrahim ◽  
Khaleel I Abass ◽  
Ali J Ali ◽  
Miqdam T Chaichan

2006 ◽  
Vol 1 (1) ◽  
pp. 151-157 ◽  
Author(s):  
M.K. Lalji ◽  
R.M. Sarviya ◽  
J.L. Bhagoria

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7423
Author(s):  
Jihu Lee ◽  
Sung-Hun Son ◽  
Kibum Kim

Indoor heating systems currently used are highly dependent on fossil fuels; hence, it is urgent to develop a new heating system to achieve carbon zero-emission. A solar air heater is eco-friendly because it generates nearly zero greenhouse gases. In this study, a parametric study was conducted for optimizing solar air heater design applicable to indoor heating. Installing the internal structure in the solar heater changes the interior flow characteristic, resulting in the air temperature increased by about 14.2 K on average compared to the heater without the internal structure. An additional case study was carried out to optimize the ideal quantity of phase change materials (PCM) in terms of mass fraction and heat capacity for various operating conditions. An excessive amount of PCM (e.g., 66% of the storage space filled with PCM) deteriorates the performance of the air heater unless the entire PCM could be melted during the daytime. After heating, the air temperature was maintained the longest when only 33% of the internal space was filled with PCM. The solar air heater can fully replace or partly assist a conventional heater for indoor heating, and it could reduce approximately 0.6 tCO2 per year.


Author(s):  
Mohammad Fakoor Pakdaman ◽  
Pejman Zohorian Izadi ◽  
Mohammad Javadinia Azari ◽  
Amir Lashkari

A cross-corrugated portable forced-convection solar air heater has been designed, fabricated, and developed. A wavelike bottom plate has been positioned crosswise to the air flow while rectangular baffles have been attached to the flat-plate absorber. The relative corrugation height, (e/Dh) ranges between 0.24 and 0.4, and relative baffles distance (l/L) varies between 0.21 and 0.48. The air flow rate in the heater duct has been varied in the range of 0.001 kgs−1 to 0.01kgs−1 (Reynolds number ranges from 350 to 3500), while other thermal specifications such as inlet, outlet, and plate temperatures have varied due to weather changes. Results of this study have been compared with those related to smooth ducts and other literatures, and the maximum enhancement in Nusselt number is observed to be approximately five times of that of the smooth duct under similar flow conditions. Finally, thermal efficiency of the device for different case studies has been determined and compared with other researches.


Author(s):  
Deeksha Vishwakarma ◽  
Jyoti Kale

In this paper, we are studying about solar air heater. The solar air heater are consisting the several component such as flat glass, collector, D.C. fan, photovoltaic cells and electrical storage system. In this study we are achieving the various type of outlet temperature with the help of D.C. fan and various Mass air flow rate using of simple absorber trays forced convection.


Sign in / Sign up

Export Citation Format

Share Document