Turbulent eddy diffusion models in exposure assessment - Determination of the eddy diffusion coefficient

2017 ◽  
Vol 14 (3) ◽  
pp. 195-206 ◽  
Author(s):  
Yuan Shao ◽  
Sandhya Ramachandran ◽  
Susan Arnold ◽  
Gurumurthy Ramachandran
1974 ◽  
Vol 96 (2) ◽  
pp. 172-177 ◽  
Author(s):  
M. Roidt ◽  
M. J. Pechersky ◽  
R. A. Markley ◽  
B. J. Vegter

A tracer gas is injected into a single subchannel of a large air flow model of a reactor rod bundle. Axial variations in the tracer flux are determined by sampling at two downstream positions in both the injection subchannel and those adjacent to it. This information, with measured subchannel area changes, is used to calculate crossflows and the turbulent eddy diffusion coefficient. The latter number agrees with the results of other investigators in regular pipe flows. Also determined are distributional factors which would be required for modeling the transport equations, for this particular scalar distribution, with a typical lumped parameter computer code.


1970 ◽  
Vol 75 (31) ◽  
pp. 6398-6401 ◽  
Author(s):  
L. R. Megill ◽  
J. C. Haslett ◽  
H. I. Schiff ◽  
G. W. Adams

2014 ◽  
Vol 32 (4) ◽  
pp. 431-442 ◽  
Author(s):  
M. N. Vlasov ◽  
M. C. Kelley

Abstract. The turbopause region is characterized by transition from the mean molecular mass (constant with altitude) to the mean mass (dependent on altitude). The former is provided by eddy turbulence, and the latter is induced by molecular diffusion. Competition between these processes provides the transition from the homosphere to the heterosphere. The turbopause altitude can be defined by equalizing the eddy and molecular diffusion coefficients and can be located in the upper mesosphere or the lower thermosphere. The height distributions of chemical inert gases very clearly demonstrate the transition from turbulent mixing to the diffusive separation of these gases. Using the height distributions of the chemical inert constituents He, Ar, and N2 given by the MSIS-E-90 model and the continuity equations, the height distribution of the eddy diffusion coefficient in the turbopause region can be inferred. The eddy diffusion coefficient always strongly reduces in the turbopause region. According to our results, eddy turbulence above its peak always cools the atmosphere. However, the cooling rates calculated with the eddy heat transport coefficient equaled to the eddy diffusion coefficient were found to be much larger than the cooling rates corresponding to the neutral temperatures given by the MSIS-E-90 model. The same results were obtained for the eddy diffusion coefficients inferred from different experimental data. The main cause of this large cooling is the very steep negative gradient of the eddy heat transport coefficient, which is equal to the eddy diffusion coefficient if uniform turbulence takes place in the turbopause region. Analysis of wind shear shows that localized turbulence can develop in the turbopause region. In this case, eddy heat transport is not so effective and the strong discrepancy between cooling induced by eddy turbulence and cooling corresponding to the temperature given by the MSIS-E-90 model can be removed.


2011 ◽  
Vol 29 (11) ◽  
pp. 2019-2029 ◽  
Author(s):  
R. L. Collins ◽  
G. A. Lehmacher ◽  
M. F. Larsen ◽  
K. Mizutani

Abstract. Rayleigh and resonance lidar observations were made during the Turbopause experiment at Poker Flat Research Range, Chatanika Alaska (65° N, 147° W) over a 10 h period on the night of 17–18 February 2009. The lidar observations revealed the presence of a strong mesospheric inversion layer (MIL) at 74 km that formed during the observations and was present for over 6 h. The MIL had a maximum temperature of 251 K, amplitude of 27 ± 7 K, a depth of 3.0 km, and overlying lapse rate of 9.4 ± 0.3 K km−1. The MIL was located at the lower edge of the mesospheric sodium layer. During this coincidence the lower edge of the sodium layer was lowered by 2 km to 74 km and the bottomside scale height of the sodium increased from 1 km to 15 km. The structure of the MIL and sodium are analyzed in terms of vertical diffusive transport. The analysis yields a lower bound for the eddy diffusion coefficient of 430 m2 s−1 and the energy dissipation rate of 2.2 mW kg−1 at 76–77 km. This value of the eddy diffusion coefficient, determined from naturally occurring variations in mesospheric temperatures and the sodium layer, is significantly larger than those reported for mean winter values in the Arctic but similar to individual values reported in regions of convective instability by other techniques.


Sign in / Sign up

Export Citation Format

Share Document