scholarly journals Assessment of personal airborne exposures and surface contamination from x-ray vaporization of beryllium targets at the National Ignition Facility

2017 ◽  
Vol 14 (6) ◽  
pp. 438-447 ◽  
Author(s):  
Samuel Y. Paik ◽  
Patrick M. Epperson ◽  
Kenneth M. Kasper
2019 ◽  
Vol 26 (6) ◽  
pp. 063105 ◽  
Author(s):  
M. J. May ◽  
G. E. Kemp ◽  
J. D. Colvin ◽  
D. A. Liedahl ◽  
P. L. Poole ◽  
...  

2010 ◽  
Vol 17 (8) ◽  
pp. 082701 ◽  
Author(s):  
K. B. Fournier ◽  
M. J. May ◽  
J. D. Colvin ◽  
J. O. Kane ◽  
M. Schneider ◽  
...  

1999 ◽  
Vol 17 (2) ◽  
pp. 217-224 ◽  
Author(s):  
T.R. DITTRICH ◽  
S.W. HAAN ◽  
M.M. MARINAK ◽  
D.E. HINKEL ◽  
S.M. POLLAINE ◽  
...  

Several choices exist in the design and production of capsules intended to ignite and propagate fusion burn of the deuterium–tritium (D–T) fuel when imploded by indirect drive at the National Ignition Facility (NIF). These choices include ablator material, ablator dopant concentration and distribution, capsule dimensions, and X-ray drive profile (shock timings and strengths). The choice of ablator material must also include fabrication and material characteristics, such as attainable surface finishes, permeability, strength, transparency to radio frequency and infrared radiation, thermal conductivity, and material homogeneity. Understanding the advantages and/or limitations of these choices is an ongoing effort for LLNL and LANL designers. At this time, simulations in one-, two-, and three-dimensions show that capsules with either a copper-doped beryllium or a polyimide (C22H10N2O4) ablator material have both the least sensitivity to initial surface roughnesses and favorable fabrication qualities. Simulations also indicate the existence of capsule designs based on these ablator materials which ignite and burn when imploded by less than nominal laser performance (900-kJ energy, 250-TW power, producing 250-eV peak radiation temperature). We will describe and compare these reduced-scale capsules, in addition to several designs which use the expected 300-eV peak X-ray drive obtained from operating the NIF laser at 1.3 MJ and 500 TW.


2018 ◽  
Vol 89 (10) ◽  
pp. 10G121 ◽  
Author(s):  
C. M. Huntington ◽  
J. M. McNaney ◽  
E. Gumbrell ◽  
A. Krygier ◽  
C. Wehrenberg ◽  
...  

2016 ◽  
Vol 87 (11) ◽  
pp. 11D703 ◽  
Author(s):  
C. R. Danly ◽  
K. Christensen ◽  
V. E. Fatherley ◽  
D. N. Fittinghoff ◽  
G. P. Grim ◽  
...  

1993 ◽  
Vol 37 ◽  
pp. 585-593
Author(s):  
Leigh Ann Filcs-Sesler ◽  
Don Plumton ◽  
Yung-Chung Kao ◽  
Tae S. Kim

AbstractThis article explores applications of total reflection x-ray fluorescence (TRXRF) to GaAs processes. The applications include determination of surface contamination and InGaAs layer thicknesses. Surface contamination can deteriorate device performance and can occur in starting substrates and in subsequent processing. We demonstrate that TRXRF is a quick, nondestructive method for identifying sulfur contamination on incoming wafers and low levels of metallic impurities from device fabrication. Variable angle TRXRF has been used to determine heterostmeture film thickness, measuring films of InGaAs on GaAs as thin as 4 nm.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1592 ◽  
Author(s):  
Binbin Zhang ◽  
Weichen Xu ◽  
Qingjun Zhu ◽  
Shuai Yuan ◽  
Yantao Li

The massive and long-term service of 5083 aluminum alloy (AA5083) is restricted by several shortcomings in marine and industrial environments, such as proneness to localized corrosion attack, surface contamination, etc. Herein, we report a facile and cost-effective strategy to transform intrinsic hydrophilicity into water-repellent superhydrophobicity, combining fluorine-free chemisorption of a hydrophobic agent with etching texture. Dual-scale hierarchical structure, surface height relief and surface chemical elements were studied by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), successively. Detailed investigations of the wetting property, self-cleaning effect, NaCl-particle self-propelling, corrosion and long-term behavior of the consequent superhydrophobic AA5083 surface were carried out, demonstrating extremely low adhesivity and outstanding water-repellent, self-cleaning and corrosion-resisting performance with long-term stability. We believe that the low cost, scalable and fluorine-free transforming of metallic surface wettability into waterproof superhydrophobicity is a possible strategy towards anti-contamination and marine anti-corrosion.


Sign in / Sign up

Export Citation Format

Share Document