scholarly journals Lotus-Inspired Multiscale Superhydrophobic AA5083 Resisting Surface Contamination and Marine Corrosion Attack

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1592 ◽  
Author(s):  
Binbin Zhang ◽  
Weichen Xu ◽  
Qingjun Zhu ◽  
Shuai Yuan ◽  
Yantao Li

The massive and long-term service of 5083 aluminum alloy (AA5083) is restricted by several shortcomings in marine and industrial environments, such as proneness to localized corrosion attack, surface contamination, etc. Herein, we report a facile and cost-effective strategy to transform intrinsic hydrophilicity into water-repellent superhydrophobicity, combining fluorine-free chemisorption of a hydrophobic agent with etching texture. Dual-scale hierarchical structure, surface height relief and surface chemical elements were studied by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), successively. Detailed investigations of the wetting property, self-cleaning effect, NaCl-particle self-propelling, corrosion and long-term behavior of the consequent superhydrophobic AA5083 surface were carried out, demonstrating extremely low adhesivity and outstanding water-repellent, self-cleaning and corrosion-resisting performance with long-term stability. We believe that the low cost, scalable and fluorine-free transforming of metallic surface wettability into waterproof superhydrophobicity is a possible strategy towards anti-contamination and marine anti-corrosion.

Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 687 ◽  
Author(s):  
Chongchong Li ◽  
Ruina Ma ◽  
An Du ◽  
Yongzhe Fan ◽  
Xue Zhao ◽  
...  

Super-hydrophobic film with hierarchical micro/nano structures was prepared by galvanic replacement reaction process on the surface of galvanized steel. The effects of the etching time and copper nitrate concentration on the wetting property of the as-prepared surfaces were studied. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical technique were employed to characterize the surface morphology, chemical composition, and corrosion resistance. The stability and self-cleaning property of the as-fabricated super-hydrophobic film were also evaluated. The super-hydrophobic film can be obtained within 3 min and possesses a water contact angle of 164.3° ± 2°. Potentiodynamic polarization measurements indicated that the super-hydrophobic film greatly improved the corrosion resistance of the galvanized steel in 3.5 wt % NaCl aqueous solution. The highest inhibition efficiency was estimated to be 96.6%. The obtained super-hydrophobic film showed good stability and self-cleaning property.


2021 ◽  
Author(s):  
Kuang Wang ◽  
Jiayi Chen ◽  
Jialong Tian ◽  
Dawei Gao ◽  
Xiaolei Song ◽  
...  

Abstract In this article, amino functionalized TiO2 (TiO2/KH550) was obtained in a mild reaction between 3-aminopropyltriethoxysilane and TiO2 with the aid of concentrated ammonia solution. 4-(4,6-dichloro-1,3,5-triazine-2-yl) amino) sodium benzenesulfonate (SAT) was synthesized and characterized by 1H NMR and fourier transform infrared spectroscopy (FT-IR). Self-dispersive and reactive TiO2 (TiO2/KH550/SAT) was prepared by nucleophile substitution reaction between TiO2/KH550 and SAT. Finally, cotton fabrics loaded with different amounts of TiO2/KH550/SAT were achieved by pad-dry-cure method. The chemical structure, dispersion and thermal performance of TiO2, TiO2/KH550 and TiO2/KH550/SAT were investigated by FT-IR, zeta potential and thermogravimetric analysis (TG). The crystalline phase, morphology, chemical composition and optical absorption property of cotton fabrics were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS). Moreover, the anti-ultraviolet, self-cleaning and washing fastness properties of cotton fabrics were investigated. It has been found that TiO2/KH550/SAT demonstrated excellent dispersion stability in aqueous even after standing for a month. Cotton fabrics loaded with TiO2/KH550/SAT possessed adorable anti-ultraviolet performance, highly efficient and durable self-cleaning activity as well as appreciable washing fastness property. The mechanism and possible reactions for the preparation of self-cleaning cotton fabrics loaded with TiO2/KH550/SAT were proposed.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 908 ◽  
Author(s):  
Hyojong Cho ◽  
Sungjun Kim

In this work, we emulate biological synaptic properties such as long-term plasticity (LTP) and short-term plasticity (STP) in an artificial synaptic device with a TiN/TiO2/WOx/Pt structure. The graded WOx layer with oxygen vacancies is confirmed via X-ray photoelectron spectroscopy (XPS) analysis. The control TiN/WOx/Pt device shows filamentary switching with abrupt set and gradual reset processes in DC sweep mode. The TiN/WOx/Pt device is vulnerable to set stuck because of negative set behavior, as verified by both DC sweep and pulse modes. The TiN/WOx/Pt device has good retention and can mimic long-term memory (LTM), including potentiation and depression, given repeated pulses. On the other hand, TiN/TiO2/WOx/Pt devices show non-filamentary type switching that is suitable for fine conductance modulation. Potentiation and depression are demonstrated in the TiN/TiO2 (2 nm)/WOx/Pt device with moderate conductance decay by application of identical repeated pulses. Short-term memory (STM) is demonstrated by varying the interval time of pulse inputs for the TiN/TiO2 (6 nm)/WOx/Pt device with a quick decay in conductance.


Author(s):  
Xiangke Kong ◽  
Chunhui Li ◽  
Ping Wang ◽  
Guoxin Huang ◽  
Zhitao Li ◽  
...  

An investigation was made into the effects of tannery sludge on soil chemical properties and microbial communities in a typical soil profile with long-term tannery sludge contamination, North China. The results showed that trivalent chromium (Cr(III)), ammonium, organic nitrogen, salinity and sulfide were the predominant contaminants in tannery sludge. Although the tannery sludge contained high chromium (Cr, 3,0970 mg/kg), the proportion of mobile Cr forms (exchangeable plus carbonate-bound fraction) only accounted for 1.32%. The X-ray diffraction and X-ray photoelectron spectroscopy results further demonstrated that the Cr existed in a stable state of oxides and iron oxides. The alkaline loam soil had a significant retardation effect on the migration of salinity, ammonium, Cr(III) and sulfide, and the accumulation of these contaminants occurred in soils (0–40 cm). A good correlation (R2 = 0.959) was observed between total organic carbon (TOC) and Cr(III) in the soil profile, indicating that the dissolved organic matter from sludge leachate promoted the vertical mobility of Cr(III) via forming Cr(III)-organic complexes. The halotolerant bacteria (Halomonas and Tepidimicrobium) and organic degrading bacteria (Flavobacteriaceae, Tepidimicrobium and Balneola) became the dominant microflora in the soil profile. High contents of salinity, Cr and nitrogen were the main environmental factors affecting the abundance of indigenous microorganisms in soils.


2016 ◽  
Vol 42 (1) ◽  
pp. 12-16
Author(s):  
Alberto Monje ◽  
Raúl González-García ◽  
María Coronada Fernández-Calderón ◽  
Margarita Hierro-Oliva ◽  
María Luisa González-Martín ◽  
...  

The aim of the present study was to report the main topographical and chemical changes of a failing 18-year in function retrieved acid-etching implant in the micro- and nanoscales. A partially edentulous 45 year old rehabilitated with a dental implant at 18 years of age exhibited mobility. After careful examination, a 3.25 × 13-mm press-fit dental implant was retrieved. Scanning electron microscope (SEM) analysis was carried out to study topographical changes of the retrieved implant compared with an unused implant with similar topographical characteristics. Moreover, X-ray photoelectron spectroscopy (XPS) analysis was used to study the surface composition of the retrieved failing implant. Clear changes related to the dual dioxide layer are present as visible in ≥×500 magnification. In addition, it was found that, for the retrieved implant, the surface composition consisted mainly of Ti2p, O1s, C1s, and Al2p. Also, a meaningful decrease of N and C was noticed, whereas the peaks of Ti2p, Al2p, and O1s increased when analyzing deeper (up to ×2000s) in the sample. It was shown that the superficial surface of a retrieved press-fit dual acid-etched implant 18 years after placement is impaired. However, the causes and consequences for these changes cannot be determined.


2016 ◽  
Vol 16 (4) ◽  
pp. 3821-3826 ◽  
Author(s):  
Wang Dexuan ◽  
Li Guian ◽  
Han Qingyan ◽  
Wang Ziqiang ◽  
Pan Liping ◽  
...  

We report a simple and environmentally friendly approach to the synthesis of Au-SiO2 composite nanospheres. Our method presents a route for the decoration of preformed amine functionalized SiO2 nanospheres by in situ formation of Au nanoparticles at three different concentrations of Au precursor (HAuCl4). Herein, the silane coupling agent (KH-550) is used as an intermediary to connect the Au nanoparticles to the surfaces of the SiO2 nanospheres, which helps avoid the aggregation of Au nanoparticles. The crystal structure, chemical elements, morphology and catalytic properties of the Au-SiO2 composite nanospheres were analyzed by transmission electron microscopy (TEM), X-Ray powder diffraction (XRD), UV-vis-spectrophotometer (UV-vis) and X-ray photoelectron spectroscopy (XPS). The analytical results demonstrate that the Au nanoparticles (4–9 nm) were homogeneously distributed on the surface of the SiO2 nanospheres, which had a good FCC crystal structure. Moreover, the Au-SiO2 composite nanospheres exhibited good catalytic properties, measured by their ability to reduce organic dyes. The Au-SiO2 composite nanospheres are promising candidates for applications in catalysis and wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document