scholarly journals Comprehensive analysis of human small RNA sequencing data provides insights into expression profiles and miRNA editing

RNA Biology ◽  
2014 ◽  
Vol 11 (11) ◽  
pp. 1375-1385 ◽  
Author(s):  
Jing Gong ◽  
Yuliang Wu ◽  
Xiantong Zhang ◽  
Yifang Liao ◽  
Vusumuzi Leroy Sibanda ◽  
...  
2020 ◽  
Vol 522 (3) ◽  
pp. 776-782
Author(s):  
Wei-Hao Lee ◽  
Kai-Pu Chen ◽  
Kai Wang ◽  
Hsuan-Cheng Huang ◽  
Hsueh-Fen Juan

2016 ◽  
Vol 13 (5) ◽  
Author(s):  
Matthew Kanke ◽  
Jeanette Baran-Gale ◽  
Jonathan Villanueva ◽  
Praveen Sethupathy

SummarySmall non-coding RNAs, in particular microRNAs, are critical for normal physiology and are candidate biomarkers, regulators, and therapeutic targets for a wide variety of diseases. There is an ever-growing interest in the comprehensive and accurate annotation of microRNAs across diverse cell types, conditions, species, and disease states. Highthroughput sequencing technology has emerged as the method of choice for profiling microRNAs. Specialized bioinformatic strategies are required to mine as much meaningful information as possible from the sequencing data to provide a comprehensive view of the microRNA landscape. Here we present miRquant 2.0, an expanded bioinformatics tool for accurate annotation and quantification of microRNAs and their isoforms (termed isomiRs) from small RNA-sequencing data. We anticipate that miRquant 2.0 will be useful for researchers interested not only in quantifying known microRNAs but also mining the rich well of additional information embedded in small RNA-sequencing data.


2009 ◽  
Vol 25 (18) ◽  
pp. 2298-2301 ◽  
Author(s):  
D. Langenberger ◽  
C. Bermudez-Santana ◽  
J. Hertel ◽  
S. Hoffmann ◽  
P. Khaitovich ◽  
...  

Genomics Data ◽  
2016 ◽  
Vol 7 ◽  
pp. 46-53 ◽  
Author(s):  
Suyash Agarwal ◽  
Naresh Sahebrao Nagpure ◽  
Prachi Srivastava ◽  
Basdeo Kushwaha ◽  
Ravindra Kumar ◽  
...  

2011 ◽  
Vol 392 (4) ◽  
Author(s):  
Sven Findeiß ◽  
David Langenberger ◽  
Peter F. Stadler ◽  
Steve Hoffmann

Abstract Many aspects of the RNA maturation leave traces in RNA sequencing data in the form of deviations from the reference genomic DNA. This includes, in particular, genomically non-encoded nucleotides and chemical modifications. The latter leave their signatures in the form of mismatches and conspicuous patterns of sequencing reads. Modified mapping procedures focusing on particular types of deviations can help to unravel post-transcriptional modification, maturation and degradation processes. Here, we focus on small RNA sequencing data that is produced in large quantities aimed at the analysis of microRNA expression. Starting from the recovery of many well known modified sites in tRNAs, we provide evidence that modified nucleotides are a pervasive phenomenon in these data sets. Regarding non-encoded nucleotides we concentrate on CCA tails, which surprisingly can be found in a diverse collection of transcripts including sub-populations of mature microRNAs. Although small RNA sequencing libraries alone are insufficient to obtain a complete picture, they can inform on many aspects of the complex processes of RNA maturation.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1576
Author(s):  
Jin-Ok Lee ◽  
Minho Lee ◽  
Yeun-Jun Chung

Transfer RNA (tRNA), a key component of the translation machinery, plays critical roles in stress conditions and various diseases. While knowledge regarding the importance of tRNA function is increasing, its biological roles are still not well understood. There is currently no comprehensive database or web server providing the expression landscape of tRNAs across a variety of human tissues and diseases. Here, we constructed a user-friendly and interactive database, DBtRend, which provides a profile of mature tRNA expression across various biological conditions by reanalyzing the small RNA or microRNA sequencing data from the Cancer Genome Atlas (TCGA) and NCBI’s Gene Expression Omnibus (GEO) in humans. Users can explore not only the expression values of mature individual tRNAs in the human genome, but also those of isodecoders and isoacceptors based on our specific pipelines. DBtRend provides the expressed patterns of tRNAs, the differentially expressed tRNAs in different biological conditions, and the information of samples or patients, tissue types, and molecular subtype of cancers. The database is expected to help researchers interested in functional discoveries of tRNAs.


2021 ◽  
Author(s):  
Jose Francisco Sanchez-Herrero ◽  
Raquel Pluvinet ◽  
Antonio Luna-de Haro ◽  
Lauro Sumoy

Abstract Background Next generation sequencing has allowed the discovery of miRNA isoforms, termed isomirs. Some isomirs are derived from imprecise processing of pre-miRNA precursors, leading to length variants. Additional variability is introduced by non-templated addition of bases at the ends or editing of internal bases, resulting in base differences relative to the template DNA sequence. We hypothesized that some component of the isomir variation reported so far could be due to systematic technical noise and not real. Results We have developed the XICRA pipeline to analyze small RNA sequencing data at the isomir level. We exploited its ability to use single or merged reads to compare isomir results derived from paired-end (PE) reads with those from single reads (SR) to address whether detectable sequence differences relative to canonical miRNAs found in isomirs are true biological variations or the result of errors in sequencing. We have detected non-negligible systematic differences between SR and PE data which primarily affect putative internally edited isomirs, and at a much smaller frequency terminal length changing isomirs. This is relevant for the identification of true isomirs in small RNA sequencing datasets. Conclusions We conclude that potential artifacts derived from sequencing errors and/or data processing could result in an overestimation of abundance and diversity of miRNA isoforms. Efforts in annotating the isomirnome should take this into account.


Sign in / Sign up

Export Citation Format

Share Document