Extracellular vesicles originating from autophagy mediate an antibody-resistant spread of classical swine fever virus in cell culture

Autophagy ◽  
2021 ◽  
pp. 1-17
Author(s):  
Tao Wang ◽  
Liang Zhang ◽  
Wulong Liang ◽  
Shanchuan Liu ◽  
Wen Deng ◽  
...  
1998 ◽  
Vol 72 (9) ◽  
pp. 7681-7684 ◽  
Author(s):  
Jon-Duri Tratschin ◽  
Christian Moser ◽  
Nicolas Ruggli ◽  
Martin A. Hofmann

ABSTRACT The sequence encoding the viral leader proteinase Nprowas replaced by the murine ubiquitin gene in a full-length cDNA clone of the classical swine fever virus (CSFV) strain Alfort/187. The recombinant virus vA187-Ubi showed growth characteristics similar to those of the parent vA187-1 virus. At two occasions cells infected with vA187-Ubi exhibited a cytopathic effect and were found to contain a subgenomic viral RNA. This RNA lacked the same viral genes as the subgenomic RNA which has been found in all cytopathogenic CSFV strains analyzed so far, but it maintained the ubiquitin sequence.


2007 ◽  
Vol 54 (4) ◽  
pp. 813-819 ◽  
Author(s):  
Jolanta Tyborowska ◽  
Ewa Zdunek ◽  
Bogusław Szewczyk

Classical swine fever virus (CSFV) is often used as a surrogate model in molecular studies of the closely related hepatitis C virus. In this report we have examined the effect of the inhibition of glycosylation on the survival and maturation of CSFV. Viral glycoproteins (E(rns), E1, E2) form biologically active complexes - homo- and heterodimers, which are indispensable for viral life cycle. Those complexes are highly N-glycosylated. We studied the influence of N-glycosylation on dimer formation using E(rns) and E2 glycoproteins produced in insect cells after infection with recombinant baculoviruses. The glycoproteins were efficiently synthesized in insect cells, had similar molecular masses and formed dimers like their natural counterparts. Surprisingly, the addition of tunicamycin (an antibiotic which blocks early steps of glycosylation) to insect cell culture blocked not only dimer formation but it also led to an almost complete disappearance of E2 even in monomeric form. Tunicamycin did not exert a similar effect on the synthesis and formation of E(rns) dimers; the dimers were still formed, which suggests that E(rns) glycan chains are not necessary for dimer formation. We have also found that very low doses of tunicamycin (much lower than those used for blocking N-glycosylation) drastically reduced CSFV spread in SK6 (swine kidney) cell culture and the virus yield. These facts indicate that N-glycosylation inhibitors structurally similar to tunicamycin may be potential therapeutics for the inhibition of the spread of CSFV and related viruses.


2021 ◽  
Vol 255 ◽  
pp. 109034
Author(s):  
Liang Zhang ◽  
Mingxing Jin ◽  
Mengzhao Song ◽  
Shanchuan Liu ◽  
Tao Wang ◽  
...  

2021 ◽  
pp. 109128
Author(s):  
Tatsuya Nishi ◽  
Katsuhiko Fukai ◽  
Tomoko Kato ◽  
Kotaro Sawai ◽  
Takehisa Yamamoto

Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 418
Author(s):  
Youngmin Park ◽  
Yeonsu Oh ◽  
Miaomiao Wang ◽  
Llilianne Ganges ◽  
José Alejandro Bohórquez ◽  
...  

The efficacy of a novel subunit vaccine candidate, based in the CSFV E2 glycoprotein produced in plants to prevent classical swine fever virus (CSFV) vertical transmission, was evaluated. A Nicotiana benthamiana tissue culture system was used to obtain a stable production of the E2-glycoprotein fused to the porcine Fc region of IgG. Ten pregnant sows were divided into three groups: Groups 1 and 2 (four sows each) were vaccinated with either 100 μg/dose or 300 μg/dose of the subunit vaccine at 64 days of pregnancy. Group 3 (two sows) was injected with PBS. Groups 1 and 2 were boosted with the same vaccine dose. At 10 days post second vaccination, the sows in Groups 2 and 3 were challenged with a highly virulent CSFV strain. The vaccinated sows remained clinically healthy and seroconverted rapidly, showing efficient neutralizing antibodies. The fetuses from vaccinated sows did not show gross lesions, and all analyzed tissue samples tested negative for CSFV replication. However, fetuses of non-vaccinated sows had high CSFV replication in tested tissue samples. The results suggested that in vaccinated sows, the plant produced E2 marker vaccine induced the protective immunogenicity at challenge, leading to protection from vertical transmission to fetuses.


Virulence ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 130-149
Author(s):  
Erpeng Zhu ◽  
Huawei Wu ◽  
Wenxian Chen ◽  
Yuwei Qin ◽  
Jiameng Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document