An inverse approach for load identification of cracked wind turbine components

Author(s):  
Ivica Cukor ◽  
Karlo Seleš ◽  
Zdenko Tonković ◽  
Mato Perić
2010 ◽  
Vol 37 (7) ◽  
pp. 865-877 ◽  
Author(s):  
Shaowen Xu ◽  
Xiaomin Deng ◽  
Vikrant Tiwari ◽  
Michael A. Sutton ◽  
William L. Fourney ◽  
...  

Author(s):  
Deepak K. Gupta ◽  
Anoop K. Dhingra

This paper presents an inverse approach for estimating dynamic loads acting on a structure from acceleration time response measured experimentally at finite number of optimally placed accelerometers on the structure. The structure acts as its own load transducer. The approach is based on the standard equilibrium equation of motion in modal coordinates. Modal model of a system is defined by its modal parameters — natural frequencies, corresponding mode shapes and modal damping factors. These parameters can be estimated experimentally from measured data, analytically for simple problems, or from finite element method. For measurement of the acceleration response, there can be a large number of combinations of locations on the structure where the accelerometers can be mounted and the results may be quite sensitive to the locations selected for accelerometer placements. In fact, the precision with which the applied loads are estimated from measured acceleration response depends on the number of accelerometers utilized and their location on the component. Implementation of a methodology to determine the optimum set of accelerometer locations, based on the construction of D-optimal design, is presented to guide the selection of number and locations of accelerometers that will provide the most precise load estimates. A technique based on model reduction is proposed to reconstruct the input forces accurately. A numerical validation that helps to understand the main characteristics of the proposed approach is also presented. The numerical results reveal the effectiveness and utility of the technique.


2003 ◽  
Vol 17 (4) ◽  
pp. 16
Author(s):  
S. Peace
Keyword(s):  

2018 ◽  
pp. 214-223
Author(s):  
AM Faria ◽  
MM Pimenta ◽  
JY Saab Jr. ◽  
S Rodriguez

Wind energy expansion is worldwide followed by various limitations, i.e. land availability, the NIMBY (not in my backyard) attitude, interference on birds migration routes and so on. This undeniable expansion is pushing wind farms near populated areas throughout the years, where noise regulation is more stringent. That demands solutions for the wind turbine (WT) industry, in order to produce quieter WT units. Focusing in the subject of airfoil noise prediction, it can help the assessment and design of quieter wind turbine blades. Considering the airfoil noise as a composition of many sound sources, and in light of the fact that the main noise production mechanisms are the airfoil self-noise and the turbulent inflow (TI) noise, this work is concentrated on the latter. TI noise is classified as an interaction noise, produced by the turbulent inflow, incident on the airfoil leading edge (LE). Theoretical and semi-empirical methods for the TI noise prediction are already available, based on Amiet’s broadband noise theory. Analysis of many TI noise prediction methods is provided by this work in the literature review, as well as the turbulence energy spectrum modeling. This is then followed by comparison of the most reliable TI noise methodologies, qualitatively and quantitatively, with the error estimation, compared to the Ffowcs Williams-Hawkings solution for computational aeroacoustics. Basis for integration of airfoil inflow noise prediction into a wind turbine noise prediction code is the final goal of this work.


2020 ◽  
Vol 21 (11) ◽  
Author(s):  
Denis Zakiev ◽  
Andrey Margin ◽  
Nikolay Krutskikh ◽  
Sergey Alibekov

Sign in / Sign up

Export Citation Format

Share Document