Psychological pressure facilitates corticospinal excitability: Motor preparation processes and EMG activity in a choice reaction task

2014 ◽  
Vol 12 (4) ◽  
pp. 287-301 ◽  
Author(s):  
Yoshifumi Tanaka ◽  
Kozo Funase ◽  
Hiroshi Sekiya ◽  
Joyo Sasaki ◽  
Yufu M. Tanaka
2011 ◽  
Vol 71 ◽  
pp. e242-e243
Author(s):  
Yoshifumi Tanaka ◽  
Kozo Funase ◽  
Hiroshi Sekiya ◽  
Joyo Sasaki ◽  
Yufu M. Tanaka

Author(s):  
Yoshifumi Tanaka ◽  
Tatsunori Shimo

The purpose of the present study was to investigate the effects of psychological pressure on corticospinal excitability, the spinal reflex, lower limb muscular activity, and reaction times during a task involving dominant leg movements. Ten healthy participants performed a simple reaction time task by raising the heel of their dominant foot from a switch. After 20 practice trials, participants performed 20 non-pressure and 20 pressure trials in a counterbalanced order. Stress responses were successfully induced, as indexed by significant increases in state anxiety, mental effort, and heart rates under pressure. Significant increases in motor evoked potential (MEP) amplitude of the tibialis anterior muscle (TA) occurred under pressure. In terms of task-related EMG amplitude, the co-contraction rate between the soleus (SOL) and TA muscles significantly increased along with SOL and TA EMG amplitudes under pressure. Hoffmann reflexes for SOL and reaction times did not change under pressure. These results indicate that corticospinal excitability and leg muscle-related EMG activity increase homogeneously during lower limb movements that are performed under psychological pressure.


2019 ◽  
Vol 122 (6) ◽  
pp. 2331-2343 ◽  
Author(s):  
Timothy S. Pulverenti ◽  
Md. Anamul Islam ◽  
Ola Alsalman ◽  
Lynda M. Murray ◽  
Noam Y. Harel ◽  
...  

Locomotion requires the continuous integration of descending motor commands and sensory inputs from the legs by spinal central pattern generator circuits. Modulation of spinal neural circuits by transspinal stimulation is well documented, but how transspinal stimulation affects corticospinal excitability during walking in humans remains elusive. We measured the motor evoked potentials (MEPs) at multiple phases of the step cycle conditioned with transspinal stimulation delivered at sub- and suprathreshold intensities of the spinally mediated transspinal evoked potential (TEP). Transspinal stimulation was delivered before or after transcranial magnetic stimulation during which summation between MEP and TEP responses in the surface EMG was absent or present. Relationships between MEP amplitude and background EMG activity, silent period duration, and phase-dependent EMG amplitude modulation during and after stimulation were also determined. Ankle flexor and extensor MEPs were depressed by suprathreshold transspinal stimulation when descending volleys were timed to interact with transspinal stimulation-induced motoneuron depolarization at the spinal cord. MEP depression coincided with decreased MEP gain, unaltered MEP threshold, and unaltered silent period duration. Locomotor EMG activity of bilateral knee and ankle muscles was significantly depressed during the step at which transspinal stimulation was delivered but fully recovered at the subsequent step. The results support a model in which MEP depression by transspinal stimulation occurs via subcortical or spinal mechanisms. Transspinal stimulation disrupts the locomotor output of flexor and extensor motoneurons initially, but the intact nervous system has the ability to rapidly overcome this pronounced locomotor adaptation. In conclusion, transspinal stimulation directly affects spinal locomotor centers in healthy humans. NEW & NOTEWORTHY Lumbar transspinal stimulation decreases ankle flexor and extensor motor evoked potentials (MEPs) during walking. The MEP depression coincides with decreased MEP gain, unaltered MEP threshold changes, and unaltered silent period duration. These findings indicate that MEP depression is subcortical or spinal in origin. Healthy subjects could rapidly overcome the pronounced depression of muscle activity during the step at which transspinal stimulation was delivered. Thus, transspinal stimulation directly affects the function of spinal locomotor networks in healthy humans.


Neuroreport ◽  
2019 ◽  
Vol 30 (12) ◽  
pp. 856-862
Author(s):  
Makoto Suzuki ◽  
Takako Suzuki ◽  
Satoshi Tanaka ◽  
Kazuhiro Sugawara ◽  
Toyohiro Hamaguchi

2005 ◽  
Vol 100 (2) ◽  
pp. 275-291 ◽  
Author(s):  
Koji Kashihara ◽  
Yoshibumi Nakahara

The duration of the enhancement of choice reaction task efficiency by physical exercise at lactate threshold was studied. After healthy male students completed the exercise or nonexercise (control) period for 10 min., they performed a three-choice reaction task for 20 min. The mean heart rate during the choice reaction task after the exercise was higher than that after the control period ( p<.05). For average percentage of correct answers, there were no significant differences between the exercise and control conditions. The reaction time during the first 8 min. of the 20-min. choice reaction task after the exercise period was less than that after the control period and increased gradually thereafter. In conclusion, whereas the choice reaction time was improved by physical exercise at around lactate threshold, the positive effects were seen mainly in the early stages of the task.


Sign in / Sign up

Export Citation Format

Share Document