Effects of psychological pressure on motor cortex excitability and EMG activity in a choice reaction task

2011 ◽  
Vol 71 ◽  
pp. e242-e243
Author(s):  
Yoshifumi Tanaka ◽  
Kozo Funase ◽  
Hiroshi Sekiya ◽  
Joyo Sasaki ◽  
Yufu M. Tanaka
Trials ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mindong Xu ◽  
Yinyu Zi ◽  
Jianlu Wu ◽  
Nenggui Xu ◽  
Liming Lu ◽  
...  

Abstract Background Opposing needling has an obvious curative effect in the treatment of post-stroke hemiplegia; however, the mechanism of the opposing needling in the treatment of post-stroke hemiplegia is still not clear. The purpose of this study is to investigate the effect of opposing needling on the excitability of primary motor cortex (M1) of healthy participants and patients with post-stroke hemiplegia, which may provide insight into the mechanisms of opposing needling in treating post-stroke hemiplegia. Methods This will be a single-blind, randomised, sham-controlled trial in which 80 healthy participants and 40 patients with post-stroke hemiplegia will be recruited. Healthy participants will be randomised 1:1:1:1 to the 2-Hz, 50-Hz, 100-Hz, and sham electroacupuncture groups. Patients with post-stroke hemiplegia will be randomised 1:1 to the opposing needling or conventional treatment groups. The M1 will be located in all groups by using neuroimaging-based navigation. The stimulator coil of transcranial magnetic stimulation (TMS) will be moved over the left and right M1 in order to identify the TMS hotspot, followed by a recording of resting motor thresholds (RMTs) and motor-evoked potentials (MEPs) of the thenar muscles induced by TMS before and after the intervention. The primary outcome measure will be the percent change in the RMTs of the thenar muscles at baseline and after the intervention. The secondary outcome measures will be the amplitude (μV) and latency (ms) of the MEPs of the thenar muscles at baseline and after the intervention. Discussion The aim of this trial is to explore the effect of opposing needling on the excitability of M1 of healthy participants and patients with post-stroke hemiplegia. Trial registration Chinese Clinical Trial Registry ChiCTR1900028138. Registered on 13 December 2019.


2021 ◽  
Vol 11 (4) ◽  
pp. 432
Author(s):  
Fiorenzo Moscatelli ◽  
Antonietta Messina ◽  
Anna Valenzano ◽  
Vincenzo Monda ◽  
Monica Salerno ◽  
...  

Transcranial magnetic stimulation, since its introduction in 1985, has brought important innovations to the study of cortical excitability as it is a non-invasive method and, therefore, can be used both in healthy and sick subjects. Since the introduction of this cortical stimulation technique, it has been possible to deepen the neurophysiological aspects of motor activation and control. In this narrative review, we want to provide a brief overview regarding TMS as a tool to investigate changes in cortex excitability in athletes and highlight how this tool can be used to investigate the acute and chronic responses of the motor cortex in sport science. The parameters that could be used for the evaluation of cortical excitability and the relative relationship with motor coordination and muscle fatigue, will be also analyzed. Repetitive physical training is generally considered as a principal strategy for acquiring a motor skill, and this process can elicit cortical motor representational changes referred to as use-dependent plasticity. In training settings, physical practice combined with the observation of target movements can enhance cortical excitability and facilitate the process of learning. The data to date suggest that TMS is a valid technique to investigate the changes in motor cortex excitability in trained and untrained subjects. Recently, interest in the possible ergogenic effect of non-invasive brain stimulation in sport is growing and therefore in the future it could be useful to conduct new experiments to evaluate the impact on learning and motor performance of these techniques.


2015 ◽  
Vol 126 (1) ◽  
pp. e26 ◽  
Author(s):  
R. Chieffo ◽  
M. Ciocca ◽  
L. Leocani ◽  
P.C. Miranda ◽  
J. Rothwell

1999 ◽  
Vol 82 (5) ◽  
pp. 2693-2704 ◽  
Author(s):  
Daniel W. Moran ◽  
Andrew B. Schwartz

Monkeys traced spirals on a planar surface as unitary activity was recorded from either premotor or primary motor cortex. Using the population vector algorithm, the hand's trajectory could be accurately visualized with the cortical activity throughout the task. The time interval between this prediction and the corresponding movement varied linearly with the instantaneous radius of curvature; the prediction interval was longer when the path of the finger was more curved (smaller radius). The intervals in the premotor cortex fell into two groups, whereas those in the primary motor cortex formed a single group. This suggests that the change in prediction interval is a property of a single population in primary motor cortex, with the possibility that this outcome is due to the different properties generated by the simultaneous action of separate subpopulations in premotor cortex. Electromyographic (EMG) activity and joint kinematics were also measured in this task. These parameters varied harmonically throughout the task with many of the same characteristics as those of single cortical cells. Neither the lags between joint-angular velocities and hand velocity nor the lags between EMG and hand velocity could explain the changes in prediction interval between cortical activity and hand velocity. The simple spatial and temporal relationship between cortical activity and finger trajectory suggests that the figural aspects of this task are major components of cortical activity.


2013 ◽  
Vol 110 (5) ◽  
pp. 1180-1189 ◽  
Author(s):  
Gustaf M. Van Acker ◽  
Sommer L. Amundsen ◽  
William G. Messamore ◽  
Hongyu Y. Zhang ◽  
Carl W. Luchies ◽  
...  

High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied to motor cortex is recognized as a useful and informative method for corticomotor mapping by evoking natural-appearing movements of the limb to consistent stable end-point positions. An important feature of these movements is that stimulation of a specific site in motor cortex evokes movement to the same spatial end point regardless of the starting position of the limb. The goal of this study was to delineate effective stimulus parameters for evoking forelimb movements to stable spatial end points from HFLD-ICMS applied to primary motor cortex (M1) in awake monkeys. We investigated stimulation of M1 as combinations of frequency (30–400 Hz), amplitude (30–200 μA), and duration (0.5–2 s) while concurrently recording electromyographic (EMG) activity from 24 forelimb muscles and movement kinematics with a motion capture system. Our results suggest a range of parameters (80–140 Hz, 80–140 μA, and 1,000-ms train duration) that are effective and safe for evoking forelimb translocation with subsequent stabilization at a spatial end point. The mean time for stimulation to elicit successful movement of the forelimb to a stable spatial end point was 475.8 ± 170.9 ms. Median successful frequency and amplitude were 110 Hz and 110 μA, respectively. Attenuated parameters resulted in inconsistent, truncated, or undetectable movements, while intensified parameters yielded no change to movement end points and increased potential for large-scale physiological spread and adverse focal motor effects. Establishing cortical stimulation parameters yielding consistent forelimb movements to stable spatial end points forms the basis for a systematic and comprehensive mapping of M1 in terms of evoked movements and associated muscle synergies. Additionally, the results increase our understanding of how the central nervous system may encode movement.


Sign in / Sign up

Export Citation Format

Share Document