Corticospinal excitability related to reciprocal muscles during the motor preparation period

Neuroreport ◽  
2019 ◽  
Vol 30 (12) ◽  
pp. 856-862
Author(s):  
Makoto Suzuki ◽  
Takako Suzuki ◽  
Satoshi Tanaka ◽  
Kazuhiro Sugawara ◽  
Toyohiro Hamaguchi
2019 ◽  
Vol 30 (4) ◽  
pp. 2478-2488 ◽  
Author(s):  
D M D Tran ◽  
J A Harris ◽  
I M Harris ◽  
E J Livesey

Abstract Preparing actions to achieve goals, overriding habitual responses, and substituting actions that are no longer relevant are aspects of motor control often assumed to be driven by deliberate top-down processes. In the present study, we investigated whether motor control could come under involuntary control of environmental cues that have been associated with specific actions in the past. We used transcranial magnetic stimulation (TMS) to probe corticospinal excitability as an index of motor preparation, while participants performed a Go/No-Go task (i.e., an action outcome or no action outcome task) and rated what trial was expected to appear next (Go or No-Go). We found that corticospinal excitability during a warning cue for the upcoming trial closely matched recent experience (i.e., cue–outcome pairings), despite conflicting with what participants expected would appear. The results reveal that in an action–outcome task, neurophysiological indices of motor preparation show changes that are consistent with participants learning to associate a preparatory warning cue with a specific action, and are not consistent with the action that participants explicitly anticipate making. This dissociation with conscious expectancy ratings reveals that conditioned responding and motor preparation can operate independently of conscious expectancies about having to act.


2007 ◽  
Vol 19 (1) ◽  
pp. 121-131 ◽  
Author(s):  
Gijs van Elswijk ◽  
Bert U. Kleine ◽  
Sebastiaan Overeem ◽  
Dick F. Stegeman

Behavioral studies using motor preparation paradigms have revealed that increased expectancy of a response signal shortens reaction times (RTs). Neurophysiological data suggest that in such paradigms, not only RT but also neuronal activity in the motor structures involved is modulated by expectancy of behaviorally relevant events. Here, we directly tested whether expectancy of a response signal modulates excitability of the corticospinal system used in the subsequent movement. We combined single- and paired-pulse transcranial magnetic stimulation (TMS) over the primary motor cortex with a simple RT task with variable preparatory delays. We found that, in line with typical behavioral observations, the subjects' RTs decreased with increasing response signal expectancy. TMS results revealed a modulation of corticospinal excitability in correspondence with response signal expectancy. Besides an increased excitability over the time-course of the preparatory delay, corticospinal excitability transiently increased whenever a response signal was expected. Paired-pulse TMS showed that this modulation is unlikely to be mediated by excitability changes in interneuronal inhibitory or facilitatory networks in the primary motor cortex. Changes in corticospinal synchronization or other mechanisms involving spinal circuits are candidates mediating the modulation of corticospinal excitability by expectancy.


2021 ◽  
Author(s):  
Matthew Weightman ◽  
John-Stuart Brittain ◽  
R.Chris Miall ◽  
Ned Jenkinson

A consistent finding in sensorimotor adaptation is a persistent undershoot of full compensation, such that performance asymptotes with residual errors greater than seen at baseline. This behaviour has been attributed to limiting factors within the implicit adaptation system, which reaches a sub-optimal equilibrium between trial-by-trial learning and forgetting. However, recent research has suggested that allowing longer motor planning periods prior to movement eliminates these residual errors. The additional planning time allows required cognitive processes to be completed before movement onset, thus increasing accuracy. Here we looked to extend these findings by investigating the relationship between increased motor preparation time and the size of imposed visuomotor rotation (30°, 45° or 60°), with regards to the final asymptotic level of adaptation. We found that restricting preparation time to 0.35 seconds impaired adaptation for moderate and larger rotations, resulting in larger residual errors compared to groups with additional preparation time. However, we found that even extended preparation time failed to eliminate persistent errors, regardless of magnitude of cursor rotation. Thus, the asymptote of adaptation was significantly less than the degree of imposed rotation, for all experimental groups. Additionally, there was a positive relationship between asymptotic error and implicit retention. These data suggest that a prolonged motor preparation period is insufficient to reliably achieve complete adaptation and therefore our results provide support for the proposal that the balance between error-based learning and forgetting (i.e., incomplete retention) contributes to asymptotic adaptation levels.


2008 ◽  
Vol 9 (1) ◽  
Author(s):  
Gijs van Elswijk ◽  
Willemijn D Schot ◽  
Dick F Stegeman ◽  
Sebastiaan Overeem

2007 ◽  
Vol 182 (1) ◽  
pp. 125-129 ◽  
Author(s):  
Rogier B. Mars ◽  
Sven Bestmann ◽  
John C. Rothwell ◽  
Patrick Haggard

2007 ◽  
Author(s):  
Donatella Spinelli ◽  
Teresa Aprile Francesco Di Russo ◽  
Sabrina Pitzalis

2018 ◽  
Author(s):  
Claudia Gianelli ◽  
Katharina Kühne ◽  
Silvia Mencaraglia ◽  
Riccardo Dalla Volta

In two experiments, we compared the dynamics of corticospinal excitability when processing visually or linguistically presented tool-oriented hand actions in native speakers and sequential bilinguals. In a third experiment we used the same procedure to test non-motor, low-level stimuli, i.e. scrambled images and pseudo-words. Stimuli were presented in sequence: pictures (tool + tool-oriented hand action or their scrambled counterpart) and words (tool noun + tool-action verb or pseudo-words). Experiment 1 presented German linguistic stimuli to native speakers, while Experiment 2 presented English stimuli to non-natives. Experiment 3 tested Italian native speakers. Single-pulse trascranial brain stimulation (spTMS) was applied to the left motor cortex at five different timings: baseline, 200ms after tool/noun onset, 150, 350 and 500ms after hand/verb onset with motor-evoked potentials (MEPs) recorded from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles.We report strong similarities in the dynamics of corticospinal excitability across the visual and linguistic modalities. MEPs’ suppression started as early as 150ms and lasted for the duration of stimulus presentation (500ms). Moreover, we show that this modulation is absent for stimuli with no motor content. Overall, our study supports the notion of a core, overarching system of action semantics shared by different modalities.


Sign in / Sign up

Export Citation Format

Share Document