Wrapping effect of secondary phases on the grains: increased corrosion resistance of Mg–Al alloys

2018 ◽  
Vol 13 (4) ◽  
pp. 292-300 ◽  
Author(s):  
Cijun Shuai ◽  
Chongxian He ◽  
Liang Xu ◽  
Quan Li ◽  
Tong Chen ◽  
...  
2005 ◽  
Vol 486-487 ◽  
pp. 125-128 ◽  
Author(s):  
Seong Jong Kim ◽  
Seok Ki Jang ◽  
Jeong Il Kim

The effects of the duration of potentiostatic anodizing on the corrosion resistance and surface morphology of anodic oxide films formed on Mg-Al alloy (AZ91) in 1 M NaOH were investigated. With the formation of an anodic film, the current density decreased gradually, started to stabilize at 300 s, and was relatively constant at 600 s. These results may be related to the increased time for catalysis of the active dissolution reaction, which not only enlarges the area covered by the anodic film, but also produces a more coherent, thicker film. The reference corrosion potentials of the anodic oxide film for AZ91 shifted in the noble direction with time. In general, the corrosion resistance characteristics were improved with anodizing time.


Author(s):  
R. Subasri

Surface cleaning and activation of substrates are two critical processes that affect the mechanical and corrosion resistance properties of protective coatings when deposited on the substrates. Surface cleaning removes the contaminants, for example, grease on the substrate, and surface activation introduces active bonds on the substrate thereby increasing the surface free energy. Conventionally, surface cleaning and activation of aluminum and its alloys are carried out by a wet chemical technique. A convenient and safe alternate to the wet chemical cleaning/activation would be to use plasma for the same purpose. Plasma surface pre-treatment greatly improves adhesion of coatings deposited, which is very vital for good corrosion protection and mechanical properties such as scratch and abrasion resistance. Cold and atmospheric air plasma treatments have been the most widely studied pre-treatments for Al alloys. This article will discuss the advancements in the use of plasma treatment on Al/Al alloys and its effect on corrosion resistance and mechanical properties of coatings deposited after the surface treatment.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
David Dias ◽  
Sandra Nakamatsu ◽  
Carlos Alberto Della Rovere ◽  
Jorge Otubo ◽  
Neide Aparecida Mariano

The microstructural characterization and corrosion resistance behavior of Fe-Mn-Si-Cr-Ni alloy with shape memory effect was studied under different mechanical processing conditions and heat treatments, which were produced using conventional casting and routing methods to reduce costs and make production viable. Microstructural characterization was performed with electron microscopy and x-ray diffraction techniques, electrochemical tests with polarization, and thermogravimetry techniques. The cast condition presented a dendritic structure and the presence of the secondary phases: ferrite-δ and Chi-X phase. The heat treatment eliminated phases, reincorporated elements in the matrix, and increased the austenitic grain. After the hot rolling process, the alloy exhibited a refined microstructure with recrystallized austenitic grains. The heat-treated condition presented better oxidation resistance than the other conditions, while the hot-rolled condition showed repassivation of the pits, raising them to higher levels. All conditions presented low corrosion resistance in environments containing chloride ions.


2009 ◽  
Vol 620-622 ◽  
pp. 153-156 ◽  
Author(s):  
Kyung Chul Park ◽  
Byung Ho Kim ◽  
Jong Jin Jeon ◽  
Yong Ho Park ◽  
Ik Min Park

In the present work, the effect of Sn addition on the corrosion behavior of Mg–5Al–1Zn alloys was investigated. Microstructure, potentiodynamic polarization and immersion tests were carried out in 3.5% NaCl solution of pH 7.2 to estimate the corrosion behavior of AZ51 alloys with and without Sn addition. Mg17Al12 and Mg2Sn phases were mainly precipitated in inter-dendrite structures. With increasing the Sn content, the volume fraction of the Mg2Sn phase was increased and coarsening tendency was observed. The corrosion resistance was increased by Sn addition. Especially, the AZ51-5wt.%Sn alloy characterized the superior corrosion resistance among the four alloys. The Sn is known for a high hydrogen overvoltage and the secondary phases effectively formed the network structure, resulting in a drastically decreasing corrosion rate of AZ51 alloy.


2006 ◽  
Vol 37 (8) ◽  
pp. 2525-2538 ◽  
Author(s):  
Wislei R. Osorio ◽  
Pedro R. Goulart ◽  
Amauri Garcia ◽  
Givanildo A. Santos ◽  
Carlos Moura Neto

Author(s):  
Antonello Alvino ◽  
Alessandra Antonini ◽  
Daniela Lega ◽  
Canio Mennuti ◽  
Andrea Tonti

ASTM A 297 grade HP steels are widely employed for radiant tubes in reforming furnaces: this class of heat resistant alloys shows high creep and corrosion resistance, ensuring good performances in extreme pressure and temperature conditions. The typical microstructure of such materials is an austenitic matrix surrounded by a network of interdendritic carbides, which contain chromium and other carbide forming elements, namely Nb, Ti, W, Zr and Y. During long service life, these high strength materials may suffer aging or even severe damage, especially when process conditions allow coke deposition, or maintenance procedures are not carried properly. Service aging can be summarized, for HP steels, in terms of microstructure degradation: coalescence and coarsening of interdendritic precipitates, precipitation of secondary carbides in the austenite matrix and transformation of niobium-rich carbides in the G-phase silicide are the typical phenomena occurring on the microstructure of these alloys during service. Carburization can also occur in radiant tubes, since their inner wall side is exposed to hydrocarbon-rich process fluids: carbon diffuses into the metal matrix, causing massive precipitation of chromium-rich carbides. The alloy corrosion resistance is then reduced, resulting in surface attack, cracks development and a general wastage of the material. Furthermore, the high temperatures, which tubes are exposed to, can also induce creep, especially if a local tube overheating occurs: cavities and microcracks, mainly localized at precipitates, are the typical evidences of creep damage on HP steels. The present work is aimed on the damage characterization of several radiant tubes in HP alloys, after long term service aging in reforming plants. We employed optical and electron microscopy, EDX elements mapping and mechanical tests, in order to characterize and evaluate the various damages affecting the alloys. Microstructure evolution has been detected in all the analyzed tubes, but we found that such a phenomenon was strictly influenced by the chemical composition of each alloy, so that in presence of small amounts of titanium and tungsten, the chemical evolution of the secondary phases was appreciably contained. Creep also was observed in all the investigated tubes and its extent was found to be related to both alloy composition and process conditions. These latter have assumed to be the main driving factor for carburization, since we observed that slight differences in temperature, pressure, chemical composition of the process fluid and tube maintenance dramatically conditioned the performances of each tube. Massive precipitation and material degradation, in fact, were found in some cases, but, on the other side, no appreciable evidence of carburization damage was observed on other cases.


2016 ◽  
Vol 877 ◽  
pp. 543-549
Author(s):  
Wei Wei Ren ◽  
Xing Feng Zhan ◽  
Lin Chi Zou ◽  
Qiang Li ◽  
Jun Feng Chen

Effect of heat treatments on the stress corrosion behavior of 7050 Al alloys in 3.5% NaCl solution has been investigated using slow strain rate tensile (SSRT) test. During the slow strain rate tensile process, electrochemical impedance spectroscopy (EIS) in real time was carried out to characterize the electrochemical behavior for different tempers 7050 Al alloys. The investigation shows that both the stress corrosion resistance of 7050 Al alloys is controlled by heat treatments due to the different precipitates state. The improvement of stress corrosion resistance is contributed to the tiny precipitates in matrix which are beneficial to corrosion potential and maintain passivation, and precipitates discontinuous distribution at grain boundary which obstruct intergranular crack connection. Moreover, base on the results, we find out retrogression and re-aging (RRA, i.e., T6 + 200 °C/ retrogression + water quench + T6) increases both tensile strength and stress corrosion resistance. The optimized of retrogression time is 30 minutes.


Sign in / Sign up

Export Citation Format

Share Document