scholarly journals Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs

2020 ◽  
pp. 1-6
Author(s):  
Yutoku Yamada ◽  
Satoshi Maki ◽  
Shunji Kishida ◽  
Haruki Nagai ◽  
Junnosuke Arima ◽  
...  
2019 ◽  
Author(s):  
Ross Marchant ◽  
Martin Tetard ◽  
Adnya Pratiwi ◽  
Thibault de Garidel-Thoron

Manual identification of foraminifera species or morphotypes under stereoscopic microscopes is time-consuming for the taxonomist, and a long-time goal has been automating this process to improve efficiency and repeatability. Recent advances in computation hardware have seen deep convolutional neural networks emerge as the state-of-the-art technique for image-based automated classification. Here, we describe a method for classifying large down-core foraminifera image set using convolutional neural networks. Construction of the classifier is demonstrated on the publically available Endless Forams image set with an best accuracy of approximately 90%. A complete down-core analysis is performed for benthic species in the Holocene period for core MD02-2518 from the North Eastern Pacific, and the relative abundances compare favourably with manual counting, showing the same signal dynamics. Using our workflow opens the way to automated paleo-reconstruction based on computer image analysis, and can be employed using our labelling and classification software, ParticleTrieur.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Sign in / Sign up

Export Citation Format

Share Document