scholarly journals Could advances in representation learning in Artificial Intelligence provide the new paradigm for data integration in drug discovery?

2019 ◽  
Vol 14 (3) ◽  
pp. 191-194 ◽  
Author(s):  
Vinaya Vijayan ◽  
Andrew D. Rouillard ◽  
Deepak K. Rajpal ◽  
Pankaj Agarwal
2020 ◽  
Vol 26 (2) ◽  
pp. 288-293
Author(s):  
Codrin-Leonard Herţanu

AbstractOur contemporary world is on the verge of crucial changes of an unparalleled pace. The ‘technological changeover’ is the new paradigm caused by the unprecedented evolution of the disruptive technologies. The present world has the tendency to evolve at least exponential, therefore future educational environment is fairly different than its present layout. An entire array of nowadays studies widely recognizes that the progress of the disruptive technologies will pose a meaningful impact over the educational system evolution. Among the most spectacular technologies with disruptive features we should encounter Artificial Intelligence, Blockchain Technology, Cloud Computing, and the like. In an era of technological disruption the education is seen as the new currency. With the help of Artificial Intelligence, for instance, the education system could track how people learn from kindergarten to retirement. Besides, the technology domain will move the centre of gravity from the institutional area to that of the education’s beneficiaries, as we might expect that they will recruit and employ the needed teacher staff, not the institutions. Moreover, the education’s recipients will be the main creators of tomorrow’s professions and within their community the overarching events will happen and the main decisions will be taken in the educational domain.


Author(s):  
Manish Kumar Tripathi ◽  
Abhigyan Nath ◽  
Tej P. Singh ◽  
A. S. Ethayathulla ◽  
Punit Kaur

Author(s):  
Diego Alejandro Dri ◽  
Maurizio Massella ◽  
Donatella Gramaglia ◽  
Carlotta Marianecci ◽  
Sandra Petraglia

: Machine Learning, a fast-growing technology, is an application of Artificial Intelligence that has significantly contributed to drug discovery and clinical development. In the last few years, the number of clinical applications based on Machine Learning has constantly been growing. Moreover, it is now also impacting National Competent Authorities during the assessment of most recently submitted Clinical Trials that are designed, managed, or generating data deriving from the use of Machine Learning or Artificial Intelligence technologies. We review current information available on the regulatory approach to Clinical Trials and Machine Learning. We also provide inputs for further reasoning and potential indications, including six actionable proposals for regulators to proactively drive the upcoming evolution of Clinical Trials within a strong regulatory framework, focusing on patient safety, health protection, and fostering immediate access to effective treatments.


2010 ◽  
Vol 7 (3) ◽  
Author(s):  
Simon J Cockell ◽  
Jochen Weile ◽  
Phillip Lord ◽  
Claire Wipat ◽  
Dmytro Andriychenko ◽  
...  

SummaryDrug development is expensive and prone to failure. It is potentially much less risky and expensive to reuse a drug developed for one condition for treating a second disease, than it is to develop an entirely new compound. Systematic approaches to drug repositioning are needed to increase throughput and find candidates more reliably. Here we address this need with an integrated systems biology dataset, developed using the Ondex data integration platform, for the in silico discovery of new drug repositioning candidates. We demonstrate that the information in this dataset allows known repositioning examples to be discovered. We also propose a means of automating the search for new treatment indications of existing compounds.


2021 ◽  
Vol 4 ◽  
Author(s):  
Mustafa Y. Topaloglu ◽  
Elisabeth M. Morrell ◽  
Suraj Rajendran ◽  
Umit Topaloglu

Artificial Intelligence and its subdomain, Machine Learning (ML), have shown the potential to make an unprecedented impact in healthcare. Federated Learning (FL) has been introduced to alleviate some of the limitations of ML, particularly the capability to train on larger datasets for improved performance, which is usually cumbersome for an inter-institutional collaboration due to existing patient protection laws and regulations. Moreover, FL may also play a crucial role in circumventing ML’s exigent bias problem by accessing underrepresented groups’ data spanning geographically distributed locations. In this paper, we have discussed three FL challenges, namely: privacy of the model exchange, ethical perspectives, and legal considerations. Lastly, we have proposed a model that could aide in assessing data contributions of a FL implementation. In light of the expediency and adaptability of using the Sørensen–Dice Coefficient over the more limited (e.g., horizontal FL) and computationally expensive Shapley Values, we sought to demonstrate a new paradigm that we hope, will become invaluable for sharing any profit and responsibilities that may accompany a FL endeavor.


Sign in / Sign up

Export Citation Format

Share Document