Novel drug discovery strategies for the treatment of decompensated cirrhosis

Author(s):  
Sven Lamatsch ◽  
Richard Sittner ◽  
Frank Tacke ◽  
Cornelius Engelmann
2014 ◽  
Vol 20 (16) ◽  
pp. 2755-2759 ◽  
Author(s):  
Satoru Ebihara ◽  
Takae Ebihara ◽  
Peijun Gui ◽  
Ken Osaka ◽  
Yasunori Sumi ◽  
...  

2019 ◽  
Vol 16 (4) ◽  
pp. 386-391 ◽  
Author(s):  
Kenneth Lundstrom

Epigenetic mechanisms comprising of DNA methylation, histone modifications and gene silencing by RNA interference have been strongly linked to the development and progression of various diseases. These findings have triggered research on epigenetic functions and signal pathways as targets for novel drug discovery. Dietary intake has also presented significant influence on human health and disease development and nutritional modifications have proven important in prevention, but also the treatment of disease. Moreover, a strong link between nutrition and epigenetic changes has been established. Therefore, in attempts to develop novel safer and more efficacious drugs, both nutritional requirements and epigenetic mechanisms need to be addressed.


2021 ◽  
Vol 14 (8) ◽  
pp. 716
Author(s):  
Yiwen Hong ◽  
Yan Luo

Visual impairment and blindness are common and seriously affect people’s work and quality of life in the world. Therefore, the effective therapies for eye diseases are of high priority. Zebrafish (Danio rerio) is an alternative vertebrate model as a useful tool for the mechanism elucidation and drug discovery of various eye disorders, such as cataracts, glaucoma, diabetic retinopathy, age-related macular degeneration, photoreceptor degeneration, etc. The genetic and embryonic accessibility of zebrafish in combination with a behavioral assessment of visual function has made it a very popular model in ophthalmology. Zebrafish has also been widely used in ocular drug discovery, such as the screening of new anti-angiogenic compounds or neuroprotective drugs, and the oculotoxicity test. In this review, we summarized the applications of zebrafish as the models of eye disorders to study disease mechanism and investigate novel drug treatments.


2019 ◽  
Vol 14 (2) ◽  
pp. 101-113 ◽  
Author(s):  
Sina Azizi Machekposhti ◽  
Saeid Mohaved ◽  
Roger J. Narayan

2019 ◽  
Vol 15 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Filip Machaj ◽  
Jakub Rosik ◽  
Bartosz Szostak ◽  
Andrzej Pawlik

2020 ◽  
Vol 13 (11) ◽  
pp. dmm044040 ◽  
Author(s):  
Katie Lloyd ◽  
Stamatia Papoutsopoulou ◽  
Emily Smith ◽  
Philip Stegmaier ◽  
Francois Bergey ◽  
...  

ABSTRACTInflammatory bowel diseases (IBDs) cause significant morbidity and mortality. Aberrant NF-κB signalling is strongly associated with these conditions, and several established drugs influence the NF-κB signalling network to exert their effect. This study aimed to identify drugs that alter NF-κB signalling and could be repositioned for use in IBD. The SysmedIBD Consortium established a novel drug-repurposing pipeline based on a combination of in silico drug discovery and biological assays targeted at demonstrating an impact on NF-κB signalling, and a murine model of IBD. The drug discovery algorithm identified several drugs already established in IBD, including corticosteroids. The highest-ranked drug was the macrolide antibiotic clarithromycin, which has previously been reported to have anti-inflammatory effects in aseptic conditions. The effects of clarithromycin effects were validated in several experiments: it influenced NF-κB-mediated transcription in murine peritoneal macrophages and intestinal enteroids; it suppressed NF-κB protein shuttling in murine reporter enteroids; it suppressed NF-κB (p65) DNA binding in the small intestine of mice exposed to lipopolysaccharide; and it reduced the severity of dextran sulphate sodium-induced colitis in C57BL/6 mice. Clarithromycin also suppressed NF-κB (p65) nuclear translocation in human intestinal enteroids. These findings demonstrate that in silico drug repositioning algorithms can viably be allied to laboratory validation assays in the context of IBD, and that further clinical assessment of clarithromycin in the management of IBD is required.This article has an associated First Person interview with the joint first authors of the paper.


Sign in / Sign up

Export Citation Format

Share Document