It's not just about protein turnover: the role of ribosomal biogenesis and satellite cells in the regulation of skeletal muscle hypertrophy

2019 ◽  
Vol 19 (7) ◽  
pp. 952-963 ◽  
Author(s):  
Matthew Stewart Brook ◽  
Daniel James Wilkinson ◽  
Ken Smith ◽  
Philip James Atherton
2018 ◽  
Vol 314 (5) ◽  
pp. R741-R751 ◽  
Author(s):  
Nobuki Moriya ◽  
Mitsunori Miyazaki

Skeletal muscle mass is determined by the net dynamic balance between protein synthesis and degradation. Although the Akt/mechanistic target of rapamycin (mTOR)-dependent pathway plays an important role in promoting protein synthesis and subsequent skeletal muscle hypertrophy, the precise molecular regulation of mTOR activity by the upstream protein kinase Akt is largely unknown. In addition, the activation of satellite cells has been indicated as a key regulator of muscle mass. However, the requirement of satellite cells for load-induced skeletal muscle hypertrophy is still under intense debate. In this study, female germline Akt1 knockout (KO) mice were used to examine whether Akt1 deficiency attenuates load-induced skeletal muscle hypertrophy through suppressing mTOR-dependent signaling and satellite cell proliferation. Akt1 KO mice showed a blunted hypertrophic response of skeletal muscle, with a diminished rate of satellite cell proliferation following mechanical overload. In contrast, Akt1 deficiency did not affect the load-induced activation of mTOR signaling and the subsequent enhanced rate of protein synthesis in skeletal muscle. These observations suggest that the load-induced activation of mTOR signaling occurs independently of Akt1 regulation and that Akt1 plays a critical role in regulating satellite cell proliferation during load-induced muscle hypertrophy.


2018 ◽  
Author(s):  
Brad Jon Schoenfeld ◽  
Bret Contreras

This letter is a response to the paper by Damas et al (2017) titled, “The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis,” which, in part, endeavored to review the role of exercise-induced muscle damage on muscle hypertrophy. We feel there are a number of issues in interpretation of research and extrapolation that preclude drawing the inference expressed in the paper that muscle damage neither explains nor potentiates increases in muscle hypertrophy. The intent of our letter is not to suggest that a causal role exists between hypertrophy and microinjury. Rather, we hope to provide balance to the evidence presented and offer the opinion that the jury is still very much out as to providing answers on the topic.


2020 ◽  
pp. 1-15
Author(s):  
Stefano Schiaffino ◽  
Carlo Reggiani ◽  
Takayuki Akimoto ◽  
Bert Blaauw

Skeletal muscle hypertrophy can be induced by hormones and growth factors acting directly as positive regulators of muscle growth or indirectly by neutralizing negative regulators, and by mechanical signals mediating the effect of resistance exercise. Muscle growth during hypertrophy is controlled at the translational level, through the stimulation of protein synthesis, and at the transcriptional level, through the activation of ribosomal RNAs and muscle-specific genes. mTORC1 has a central role in the regulation of both protein synthesis and ribosomal biogenesis. Several transcription factors and co-activators, including MEF2, SRF, PGC-1α4, and YAP promote the growth of the myofibers. Satellite cell proliferation and fusion is involved in some but not all muscle hypertrophy models.


Sign in / Sign up

Export Citation Format

Share Document