Analytical solution for active earth pressure of c–φ soil considering arching effect

2018 ◽  
Vol 14 (2) ◽  
pp. 71-84 ◽  
Author(s):  
Kourosh Ghaffari Irdmoosa ◽  
Hadi Shahir
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sahar Ghobadi ◽  
Hadi Shahir

Purpose The purpose of this paper is to study the distribution of active earth pressure in retaining walls with narrow cohesion less backfill considering arching effects. Design/methodology/approach To this end, the approach of principal stresses rotation was used to consider the arching effects. Findings According to the presented formulation, the active soil pressure distribution is nonlinear with zero value at the wall base. The proposed formulation implies that by increasing the frictional forces at both sides of the backfill, the arching effect is increased and so, the lateral earth pressure on the retaining wall is decreased. Also, by narrowing the backfill space, the lateral earth pressure is extremely decreased. Originality/value A comprehensive analytical solution for the active earth pressure of narrow backfills is presented, such that the effects of the surcharge and the characteristics of the stable back surface are considered. The magnitude and height of the application of lateral active force are also derived.


2000 ◽  
Vol 37 (1) ◽  
pp. 171-177 ◽  
Author(s):  
Nirmala Gnanapragasam

An analytical solution is developed to determine the active lateral earth pressure distribution on a retaining structure when it consists of a cohesive backfill (internal friction angle ϕ > 0, cohesion c > 0) with an inclined ground surface. The solution derived encompasses both Bell's equation (for cohesive or cohesionless backfill with a horizontal ground surface) and Rankine's solution (for cohesionless backfill with an inclined ground surface). The orientation of the failure surface is also determined. Results indicate that, unlike the soil-wall scenarios of Bell and Rankine where the failure planes are parallel with a fixed orientation independent of the overburden pressure, for sloping cohesive backfill (ϕ > 0, c > 0) the slope of the failure surface is a function of the overburden pressure and becomes shallower with depth, thus forming a curvilinear failure surface. The solution developed can also be used to check the sustainability of a slope. The analytical solution can be programmed conveniently in a computer.Key words: retaining structure, active earth pressure, cohesive backfill.


2021 ◽  
Author(s):  
Jun-feng Jiang ◽  
Qi-hua Zhao ◽  
Shuairun Zhu ◽  
Sheqin Peng ◽  
Yonghong Wu

Abstract A new approach is proposed to evaluate the non-limit active earth pressure in cohesive-frictional based on the horizontal slices method and limit equilibrium method. This approach takes into account the arching effect, displacement, average shear stress of the soil slice, rupture angle and tension cracks. The accuracy of the proposed method is demonstrated by comparing the experimental results and other theoretical methods. The comparison results show that the proposed approach is suitable for calculating the non-limit active earth pressure in cohesive-frictional soil and cohesionless soil. Additionally, the empirical formulations of the mobilized internal friction angle and soil-wall interface friction angle usually used to cohesionless soil are still applied to cohesive-frictional soil through comparison calculated results of other theoretical methods and finite element method. Some valid formulations of the rupture angle and tension cracks were derived considering the cohesion, wall height, and unit weight.


2020 ◽  
Vol 10 (9) ◽  
pp. 3243
Author(s):  
Meilin Liu ◽  
Xiangsheng Chen ◽  
Zhenzhong Hu ◽  
Shuya Liu

For c-φ soil formation (cohesive soil) of limited width with ground surface overload behind a deep retaining structure, a modified active earth pressure calculation model is established in this study. And three key issues are addressed through improved soil arching effect. First, the soil-wall interaction mechanism is determined by considering the soil arching effect. The slip surface of a limited soil is proved to be a double-fold line passing through the retaining wall toe and intersecting the side wall of the existing underground structure until it reaches the ground surface along the existing side wall. Second, the limited width boundary is explicated. And third, the variation in the active earth pressure from parameters of limited c-φ soil is determined. The lateral active earth pressure coefficient is nonlinear distributed based on the improved soil arching effect of the symmetric catenary curve. Furthermore, the active earth pressure distribution, the tension crack at the top of the retaining wall and the resultant force and its action point were obtained. By comparing with the existing analytical methods, such as the Rankine method, it demonstrates that the model proposed in this study is much closer to the measured and numerical results. Ignoring the influence of soil cohesion and the limited width will exponentially reduce the overall stability of the retaining structure and increase the risk of accidents.


2015 ◽  
Vol 1089 ◽  
pp. 286-291
Author(s):  
Chao Tian ◽  
Yong Gang Li ◽  
Zhi Xiong Zhang

For the retaining wall in translation, in this paper the writers present the minor principal stresses trajectory which named minor principal stress arches. By discussing the results of the various arch curves in arching effect with different displacements of retaining wall which include the arch curves in ultimate model of soil and the arch curves in none limit state of soil. It gets the soil arch curve change rule under different state of the displacements, different friction angles and different height: the arch curve turn gentle when the displacements increase.


Sign in / Sign up

Export Citation Format

Share Document