scholarly journals Facing the climate change conundrum at the South Pole: actors’ perspectives on the implications of global warming for Chilean Antarctic governance

2018 ◽  
Vol 37 (1) ◽  
pp. 1468195
Author(s):  
Ekaterina Gladkova ◽  
Gustavo Blanco-Wells ◽  
Laura Nahuelhual
2019 ◽  
Vol 8 (3) ◽  
pp. 56-73 ◽  
Author(s):  
Ragnhild Sollund ◽  
Angela M Maldonado ◽  
Claudia Brieva Rico

The Norwegian government has made an agreement with Juan Manuel Santos, former Colombian president, to give Colombia US$48 million yearly to reduce deforestation. This forms part of a greater effort by Norway to aid countries in the South to halt climate change, through the Norwegian International Climate and Forest Initiative, instituted after the Paris Agreement in 2015. The ways efforts to reduce deforestation have been implemented have been criticised. While Norway, through this investment, appears to be a climate-concerned country, it continues with oil extraction activities. Thus, Norway exhibits double standards and shifts the problem of climate change to the countries in the South. This article examines the successes and failures of the Norwegian rainforest protection efforts in the case of Colombia, assessing the governance of the deforestation policies from the perspective of green Southern criminology and incorporating a critique of the neo-colonialist means of environmental protection established by the North.


2015 ◽  
Vol 11 (2) ◽  
pp. 1371-1405
Author(s):  
A. E. Chew

Abstract. Scientists are increasingly turning to deep-time fossil records to decipher the long-term consequences of climate change in the race to preserve modern biotas from anthropogenically driven global warming. "Hyperthermals" are past intervals of geologically rapid global warming that provide the opportunity to study the effects of climate change on existing faunas over thousands of years. A series hyperthermals is known from the early Eocene (∼56–54 million years ago), including the Paleocene-Eocene Thermal Maximum (PETM) and two subsequent hyperthermals, Eocene Thermal Maximum 2 (ETM2) and H2. The later hyperthermals occurred following the onset of warming at the Early Eocene Climatic Optimum (EECO), the hottest sustained period of the Cenozoic. The PETM has been comprehensively studied in marine and terrestrial settings, but the terrestrial biotic effects of ETM2 and H2 are unknown. Their geochemical signatures have been located in the northern part of the Bighorn Basin, WY, USA, and their levels can be extrapolated to an extraordinarily dense, well-studied terrestrial mammal fossil record in the south-central part of the basin. High-resolution, multi-parameter paleoecological analysis reveals significant peaks in species diversity and turnover and changes in abundance and relative body size at the levels of ETM2 and H2 in the south-central Bighorn Basin record. In contrast with the PETM, faunal change at the later hyperthermals is less extreme, does not include immigration and involves a proliferation of body sizes, although abundance shifts tend to favor smaller congeners. Faunal response at ETM2 and H2 is distinctive in its high proportion of species losses potentially related to heightened species vulnerability in response to the changes already underway at the beginning of the EECO. Faunal response at ETM2 and H2 is also distinctive in high proportions of beta richness, suggestive of increased geographic dispersal related to transient increases in habitat (floral) complexity and/or precipitation or seasonality of precipitation. These results suggest that rapid ecological changes, increased heterogeneity in species incidence, and heightened species vulnerability and loss may be expected across most of North America in the near future in response to anthropogenically-driven climate change.


2008 ◽  
Vol 5 (4) ◽  
pp. 268 ◽  
Author(s):  
P. D. Hamer ◽  
D. E. Shallcross ◽  
A. Yabushita ◽  
M. Kawasaki

Environmental context. The study of surface photochemical ozone production on the Antarctic continent has direct relevance to climate change and general air quality and is scientifically noteworthy given the otherwise pristine nature of this environmental region. The identification of possible direct ozone emissions from snow surfaces and their contribution to the already active photochemical pollution present there represents a unique physical phenomenon. This process could have wider global significance for other snow-covered regions and therefore for global climate change. Abstract. O(3P) emissions due to photolysis of nitrate were recently identified from ice surfaces doped with nitric acid. O(3P) atoms react directly with molecular oxygen to yield ozone. Therefore, these results may have direct bearing on photochemical activity monitored at the South Pole, a site already noted for elevated summertime surface ozone concentrations. NO2 is also produced via the photolysis of nitrate and the firn air contains elevated levels of NO2, which will lead to direct emission of NO2. A photochemical box model was used to probe what effect O(3P) and NO2 emissions have on ozone concentrations within the South Pole boundary layer. The results suggest that these emissions could account for a portion of the observed ozone production at the South Pole and may explain the observed upward fluxes of ozone identified there.


2021 ◽  
Vol 1 (2) ◽  
pp. 51-56
Author(s):  
Mehmet ÇALIKOĞLU ◽  
Alper Ahmet ÖZBEY ◽  
Halil İbrahim YOLCU

Twenty provenances of Atlas Cedar, three provenances of Lebanon Cedar and two provenances of Cyprus Cedar had subjected to 20 year adaptation trials in Soutwestern Mediterrenean Elmalı and Keçiborlu locations where Supra-Mediterranean (cool,semi-arid) Bioclimatic conditions prevail.  According to 20 year’s results, it was determined that Algerian Atlas cedar, Lebanon cedar and Cyprus cedar provenances had adaptation capability to mentioned conditions. Nevertheless, Morocco provenances of Atlas cedar had lower adaptation hence vulnerability to expected climate change due to global warming.


2022 ◽  
Author(s):  
Ian Mercer ◽  
Ros Mercer

All landscapes are built on rock: from hard stone for building with, to the softest clay or sand. Each piece of rock is a storehouse of prehistorical information; even a simple pebble from the garden has its own complex tale to tell. Geology is the great detective science that can unlock these secrets. In this entertaining and eye-opening book, the authors take a deep dive – quite literally – into their home county of Essex. We are all living in an ice age, an ongoing event that has hugely affected Essex over the last 3 million years. Yet this county was born more than 500 million years ago. Our story begins when the land we know as Essex was part of a large continent close to the South Pole, tracing the geological processes that continue to shape the countryside around us. The form of the land, boulders on village greens, road cuttings, cliffs, stones in church walls – they can all bring geology to light in unexpected and fascinating ways. Aimed at a general readership with no scientific background, chapters progress from fundamentals to intricate details of geological investigations and cutting-edge research. Richly illustrated with photographs and colour diagrams, here the geology of a county is visualised and brought to life as never before, along with pertinent environmental insights in the light of climate change that is happening now.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2018 ◽  
Vol 45 ◽  
pp. 31-38
Author(s):  
Federica La Longa ◽  
Massimo Crescimbene ◽  
Lucilla Alfonsi ◽  
Claudio Cesaroni ◽  
Vincenzo Romano
Keyword(s):  

2020 ◽  
Author(s):  
Alistair Soutter ◽  
René Mõttus

Although the scientific evidence of anthropogenic climate change continues to grow, public discourse still reflects a high level of scepticism and political polarisation towards anthropogenic climate change. In this study (N = 499) we attempted to replicate and expand upon an earlier finding that environmental terminology (“climate change” versus “global warming”) could partly explain political polarisation in environmental scepticism (Schuldt, Konrath, & Schwarz, 2011). Participants completed a series of online questionnaires assessing personality traits, political preferences, belief in environmental phenomenon, and various pro-environmental attitudes and behaviours. Those with a Conservative political orientation and/or party voting believed less in both climate change and global warming compared to those with a Liberal orientation and/or party voting. Furthermore, there was an interaction between continuously measured political orientation, but not party voting, and question wording on beliefs in environmental phenomena. Personality traits did not confound these effects. Furthermore, continuously measured political orientation was associated with pro-environmental attitudes, after controlling for personality traits, age, gender, area lived in, income, and education. The personality domains of Openness, and Conscientiousness, were consistently associated with pro-environmental attitudes and behaviours, whereas Agreeableness was associated with pro-environmental attitudes but not with behaviours. This study highlights the importance of examining personality traits and political preferences together and suggests ways in which policy interventions can best be optimised to account for these individual differences.


Sign in / Sign up

Export Citation Format

Share Document