scholarly journals The Norway–Colombia Agreement to Protect Rainforest and Reduce Global Warming: Success or Failure?

2019 ◽  
Vol 8 (3) ◽  
pp. 56-73 ◽  
Author(s):  
Ragnhild Sollund ◽  
Angela M Maldonado ◽  
Claudia Brieva Rico

The Norwegian government has made an agreement with Juan Manuel Santos, former Colombian president, to give Colombia US$48 million yearly to reduce deforestation. This forms part of a greater effort by Norway to aid countries in the South to halt climate change, through the Norwegian International Climate and Forest Initiative, instituted after the Paris Agreement in 2015. The ways efforts to reduce deforestation have been implemented have been criticised. While Norway, through this investment, appears to be a climate-concerned country, it continues with oil extraction activities. Thus, Norway exhibits double standards and shifts the problem of climate change to the countries in the South. This article examines the successes and failures of the Norwegian rainforest protection efforts in the case of Colombia, assessing the governance of the deforestation policies from the perspective of green Southern criminology and incorporating a critique of the neo-colonialist means of environmental protection established by the North.

2016 ◽  
Vol 27 (8) ◽  
pp. 883-895
Author(s):  
David Campbell

Though very widely believed to be inadequate in the target it sets, the Paris Agreement is commonly thought actually to set a binding target of reducing global CO2e emissions so as to limit global warming to 2℃. Proper legal interpretation of the Agreement shows it to set no such target. It rather gives the newly industrialising countries such as China and India a permission to emit as much as they see fit. These countries have been principally responsible for the huge growth in emissions since 1990 and they will be responsible for their continued huge growth until 2030. The Paris Agreement therefore makes the policy of mitigation of global warming impossible. However, this policy has been impossible over the whole of the now more than a quarter century of international climate change policy.


2016 ◽  
Vol 04 (01) ◽  
pp. 1650004 ◽  
Author(s):  
Guoguang ZHENG ◽  
Qingchen CHAO ◽  
Yongxiang ZHANG

After tough negotiations, the Paris Agreement finally reached at the Climate Change Conference in Paris. When taking the background into consideration, though the process is tortuous and arduous, the desirability of the Agreement needs no affirmation. Global warming is unequivocal, posing a serious risk to global economic, social sustainable development and natural as well as ecological environment. Scientific evidence shows that human activity is the main cause of current global warming. Tackling climate change should be the path leading the whole society to shift towards low-carbon, green, and circular development, in order to achieve the sustainable development of the international community. World leaders gathered in Paris to discuss actions against climate change and helped establish an international climate governance system after 2020. As governments and the international community are gradually reaching a consensus on the issue of addressing climate change, positive political will and the awareness of win–win cooperation are growing strong. The adoption of the Paris Agreement indicates a new phase of international climate governance, encouraging the parties to participate with more inclusive and practical ways.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


2021 ◽  
Author(s):  
Wanderson Luiz-Silva ◽  
Pedro Regoto ◽  
Camila Ferreira de Vasconcellos ◽  
Felipe Bevilaqua Foldes Guimarães ◽  
Katia Cristina Garcia

<p>This research aims to support studies related to the adaptation capacity of the Amazon region to climate change. The Belo Monte Hydroelectric Power Plant (HPP) is in the Xingu River basin, in eastern Amazonia. Deforestation coupled with changes in water bodies that occurred in the drainage area of Belo Monte HPP over the past few decades can significantly influence the hydroclimatic features and, consequently, ecosystems and energy generation in the region. In this context, we analyze the climatology and trends of climate extremes in this area. The climate information comes from daily data in grid points of 0.25° x 0.25° for the period 1980-2013, available in http://careyking.com/data-downloads/. A set of 17 climate extremes indices based on daily data of maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP) was calculated through the RClimDex software, recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The Mann-Kendall and the Sen’s Curvature tests are used to assess the statistical significance and the magnitude of the trends, respectively. The drainage area of the Belo Monte HPP is dominated by two climatic types: an equatorial climate in the north-central portion of the basin, with high temperatures and little variation throughout the year (22°C to 32°C), in addition to more frequent precipitation; and a tropical climate in the south-central sector, which experiences slightly more pronounced temperature variations throughout the year (20°C to 33°C) and presents a more defined wet and dry periods. The south-central portion of the basin exhibits the highest temperature extremes, with the highest TX and the lowest TN of the year occurring in this area, both due to the predominant days of clear skies in the austral winter, as to the advance of intense masses of polar air at this period. The diurnal temperature range is lower in the north-central sector when compared to that in the south-central region since the first has greater cloud cover and a higher frequency of precipitation. The largest annual rainfall volumes are concentrated at the north and west sides (more than 1,800 mm) and the precipitation extremes are heterogeneous across the basin. The maximum number of consecutive dry days increases from the north (10 to 20 days) to the south (90 to 100 days). The annual frequency of warm days and nights is increasing significantly in a large part of the basin with a magnitude ranging predominantly from +7 to +19 days/decade. The annual rainfall shows a predominant elevation sign of up to +200 mm/decade only in the northern part of the basin, while the remainder shows a reduction of up to -100 mm/decade. The duration of drought periods increases in the south-central sector of the basin, reaching up to +13 days/decade in some areas. The results of this study will be used in the future as an important input, together with exposure, sensibility, and local adaptation capacity, to design adaptation strategies that are more consistent with local reality and to the needs of local communities.</p>


2013 ◽  
Vol 10 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Y. Goddéris ◽  
S. L. Brantley ◽  
L. M. François ◽  
J. Schott ◽  
D. Pollard ◽  
...  

Abstract. Quantifying how C fluxes will change in the future is a complex task for models because of the coupling between climate, hydrology, and biogeochemical reactions. Here we investigate how pedogenesis of the Peoria loess, which has been weathering for the last 13 kyr, will respond over the next 100 yr of climate change. Using a cascade of numerical models for climate (ARPEGE), vegetation (CARAIB) and weathering (WITCH), we explore the effect of an increase in CO2 of 315 ppmv (1950) to 700 ppmv (2100 projection). The increasing CO2 results in an increase in temperature along the entire transect. In contrast, drainage increases slightly for a focus pedon in the south but decreases strongly in the north. These two variables largely determine the behavior of weathering. In addition, although CO2 production rate increases in the soils in response to global warming, the rate of diffusion back to the atmosphere also increases, maintaining a roughly constant or even decreasing CO2 concentration in the soil gas phase. Our simulations predict that temperature increasing in the next 100 yr causes the weathering rates of the silicates to increase into the future. In contrast, the weathering rate of dolomite – which consumes most of the CO2 – decreases in both end members (south and north) of the transect due to its retrograde solubility. We thus infer slower rates of advance of the dolomite reaction front into the subsurface, and faster rates of advance of the silicate reaction front. However, additional simulations for 9 pedons located along the north–south transect show that the dolomite weathering advance rate will increase in the central part of the Mississippi Valley, owing to a maximum in the response of vertical drainage to the ongoing climate change. The carbonate reaction front can be likened to a terrestrial lysocline because it represents a depth interval over which carbonate dissolution rates increase drastically. However, in contrast to the lower pH and shallower lysocline expected in the oceans with increasing atmospheric CO2, we predict a deeper lysocline in future soils. Furthermore, in the central Mississippi Valley, soil lysocline deepening accelerates but in the south and north the deepening rate slows. This result illustrates the complex behavior of carbonate weathering facing short term global climate change. Predicting the global response of terrestrial weathering to increased atmospheric CO2 and temperature in the future will mostly depend upon our ability to make precise assessments of which areas of the globe increase or decrease in precipitation and soil drainage.


2021 ◽  
Author(s):  
Alexandra Rodriguez ◽  
Giuseppe La Gioia ◽  
Patricia Le Quilliec ◽  
Damien Fourcy ◽  
Philippe Clergeau

Global change, which regroups global warming, landscape transformations and other anthropic modifications of ecosystems, has effects on populations and communities and produces modifications in the expansion area of species. While some species disappear, other ones are beneficiated by the new conditions and some of them evolve in new adapted forms or leave their ancient distribution area. As climate change tends to increase the temperature in several regions of the world, some species have been seen to leave areas in equatorial regions in order to join colder areas either towards the north of the northern hemisphere or towards the south of the southern one. Many birds as have moved geographically in direction to the poles and in many cases they have anticipated their laying dates. Actually, two tit species that use to lay their eggs in a period that their fledging dates synchronize with the emerging dates of caterpillars are now evolving to reproductive in periods earlier than before the climate change. Several species are reacting like that and other ones are moving to the north in Europe for example. Nevertheless, and very curiously, European starling, Sturnus vulgaris, populations are behaving on the contrary: their laying dates are moving towards later spring and their distribution area is moving towards the south. In this study we explore and discuss about different factors that may explain this difference from other birds.


2021 ◽  
Author(s):  
Stella Volpini ◽  
Marco Pilotti ◽  
Giulia Valerio ◽  
Steven C. Chapra

<p>The Natural Reserve “Torbiere del Sebino” is situated on the southern bank of Lake Iseo and is one the most meaningful wet zone for extension and ecological importance of northern Italy, belonging to the Natura2000 network.</p><p>Torbiere occupies an area of 3.60 km<sup>2</sup> within a 14 km<sup>2</sup> watershed where almost 12000 inhabitants live and where agricultural activities, mostly vineyards, cover almost 40% of the area; this leads to a significant anthropic pressure that over the last 50 years has compromised the system and changed the equilibria between species, enhancing eutrophication.</p><p>Despite the ecological relevance of the area, one of the most important in northern Italy, very little quantitative information is available regarding its current state and evolution in terms of water quality and hydrodynamics.  Given the critical environmental condition of the habitat, it is necessary to address the consequences of human impact on the trophic state of Torbiere.</p><p>Torbiere consists of a system of shallow lakes or ponds (average depth 1.5 m) whose main affluent is a creek (called Rì) entering from the South. A secondary occasional affluent enters the system from the East and consists of a combined sewer overflow (CSO). Finally, the main effluent is an artificial channel located in the North connecting Torbiere directly with the subalpine Lake Iseo. Although originally subdivided into a set of many interconnected ponds, the separation levees have been demolished over the last decades to enhance internal circulation, under the assumption that this would decrease the residence time and improve the water quality. However, no rational argument was used to support this decision that led to a system where similar characteristics (Secchi’s depth, turbidity, specific conductivity) are found all over the study area and where the expansion of invasive species was easier; now there is some evidence that a separate set of ponds would be better manageable to contrast the eutrophication process. To understand this process, a 3D hydrodynamic model has been set up using Delft-3D, an open source, finite difference package. </p><p>Given the great extension of the system, the inner circulation of the water is not driven by the momentum of the affluents, instead the wind plays a major role. This forcing term presents a daily pattern: it blows from the North in the mornings and shifts to the opposite direction in the late afternoon. The water mainly flows from the South to the North. However, preliminary results by Delft 3D showed that the circulation is made complex by the wind. The model shows that opposite directions of horizontal flow velocities are found at the surface and at the bottom of the water column, showing that only the upper layers follow the direction of the wind.</p><p>By comparing the actual and previous conditions of separation of the ponds, the model aims to give an answer to whether the choice of demolishing the banks was positive or negative for the water quality of Torbiere. Once the role of the banks will be clarified, the effects of their possible restoration will be addressed.</p>


2021 ◽  
pp. 1-10
Author(s):  
Eelco J. Rohling

This chapter outlines the challenge facing us. The Paris Agreement sets a target maximum of 2°C global warming and a preferred limit of 1.5°C. Yet, the subsequent combined national pledges for emission reduction suffice only for limiting warming to roughly 3°C. And because most nations are falling considerably short of meeting their pledges, even greater warming may become locked in. Something more drastic and wide-ranging is needed: a multi-pronged strategy. These different prongs to the climate-change solution are introduced in this chapter and explored one by one in the following chapters. First is rapid, massive reduction of greenhouse gas emissions. Second is implementation of ways to remove greenhouse gases from the atmosphere. Third may be increasing the reflectivity of Earth to incoming sunlight, to cool certain places down more rapidly. In addition, we need to protect ourselves from climate-change impacts that have already become inevitable.


Author(s):  
Annalisa Savaresi

This chapter discusses how international law has responded to climate change, focusing on the challenges that have faced implementation of existing climate treaties, and on the suitability of the Paris Agreement to address these. Expectations of this new treaty could scarcely be greater: the Paris Agreement is meant to provide a framework to improve international cooperation on climate change, and to keep the world within the global mean temperature-change goal identified by scientists as safe. Yet, whether and how this important objective will be reached largely depends, on the one hand, on the supporting political will and, on the other, on the redesign of the international architecture for climate governance. This chapter specifically reflects on international law-making and on the approach to climate change governance embedded in the Paris Agreement, drawing inferences from the past, to make predictions on what the future may hold for international climate change law.


Sign in / Sign up

Export Citation Format

Share Document