Estimating high-spatial resolution surface daily longwave radiation from the instantaneous Global LAnd Surface Satellite (GLASS) longwave radiation product

Author(s):  
Qi Zeng ◽  
Jie Cheng
2021 ◽  
Vol 13 (9) ◽  
pp. 1848
Author(s):  
Chunjie Feng ◽  
Xiaotong Zhang ◽  
Yu Wei ◽  
Weiyu Zhang ◽  
Ning Hou ◽  
...  

It is of great importance for climate change studies to construct a worldwide, long-term surface downward longwave radiation (Ld, 4–100 μm) dataset. Although a number of global Ld datasets are available, their low accuracies and coarse spatial resolutions limit their applications. This study generated a daily Ld dataset with a 5-km spatial resolution over the global land surface from 2000 to 2018 using atmospheric parameters, which include 2-m air temperature (Ta), relative humidity (RH) at 1000 hPa, total column water vapor (TCWV), surface downward shortwave radiation (Sd), and elevation, based on the gradient boosting regression tree (GBRT) method. The generated Ld dataset was evaluated using ground measurements collected from AmeriFlux, AsiaFlux, baseline surface radiation network (BSRN), surface radiation budget network (SURFRAD), and FLUXNET networks. The validation results showed that the root mean square error (RMSE), mean bias error (MBE), and correlation coefficient (R) values of the generated daily Ld dataset were 17.78 W m−2, 0.99 W m−2, and 0.96 (p < 0.01). Comparisons with other global land surface radiation products indicated that the generated Ld dataset performed better than the clouds and earth’s radiant energy system synoptic (CERES-SYN) edition 4.1 dataset and ERA5 reanalysis product at the selected sites. In addition, the analysis of the spatiotemporal characteristics for the generated Ld dataset showed an increasing trend of 1.8 W m−2 per decade (p < 0.01) from 2003 to 2018, which was closely related to Ta and water vapor pressure. In general, the generated Ld dataset has a higher spatial resolution and accuracy, which can contribute to perfect the existing radiation products.


CATENA ◽  
2021 ◽  
Vol 202 ◽  
pp. 105304
Author(s):  
Yufeng Li ◽  
Cheng Wang ◽  
Alan Wright ◽  
Hongyu Liu ◽  
Huabing Zhang ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 2211
Author(s):  
Shuo Xu ◽  
Jie Cheng ◽  
Quan Zhang

Land surface temperature (LST) is an important parameter for mirroring the water–heat exchange and balance on the Earth’s surface. Passive microwave (PMW) LST can make up for the lack of thermal infrared (TIR) LST caused by cloud contamination, but its resolution is relatively low. In this study, we developed a TIR and PWM LST fusion method on based the random forest (RF) machine learning algorithm to obtain the all-weather LST with high spatial resolution. Since LST is closely related to land cover (LC) types, terrain, vegetation conditions, moisture condition, and solar radiation, these variables were selected as candidate auxiliary variables to establish the best model to obtain the fusion results of mainland China during 2010. In general, the fusion LST had higher spatial integrity than the MODIS LST and higher accuracy than downscaled AMSR-E LST. Additionally, the magnitude of LST data in the fusion results was consistent with the general spatiotemporal variations of LST. Compared with in situ observations, the RMSE of clear-sky fused LST and cloudy-sky fused LST were 2.12–4.50 K and 3.45–4.89 K, respectively. Combining the RF method and the DINEOF method, a complete all-weather LST with a spatial resolution of 0.01° can be obtained.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Sabelo Nick Dlamini ◽  
Jonas Franke ◽  
Penelope Vounatsou

Many entomological studies have analyzed remotely sensed data to assess the relationship between malaria vector distribution and the associated environmental factors. However, the high cost of remotely sensed products with high spatial resolution has often resulted in analyses being conducted at coarse scales using open-source, archived remotely sensed data. In the present study, spatial prediction of potential breeding sites based on multi-scale remotely sensed information in conjunction with entomological data with special reference to presence or absence of larvae was realized. Selected water bodies were tested for mosquito larvae using the larva scooping method, and the results were compared with data on land cover, rainfall, land surface temperature (LST) and altitude presented with high spatial resolution. To assess which environmental factors best predict larval presence or absence, Decision Tree methodology and logistic regression techniques were applied. Both approaches showed that some environmental predictors can reliably distinguish between the two alternatives (existence and non-existence of larvae). For example, the results suggest that larvae are mainly present in very small water pools related to human activities, such as subsistence farming that were also found to be the major determinant for vector breeding. Rainfall, LST and altitude, on the other hand, were less useful as a basis for mapping the distribution of breeding sites. In conclusion, we found that models linking presence of larvae with high-resolution land use have good predictive ability of identifying potential breeding sites.


2020 ◽  
Vol 12 (11) ◽  
pp. 1834
Author(s):  
Boxiong Qin ◽  
Biao Cao ◽  
Hua Li ◽  
Zunjian Bian ◽  
Tian Hu ◽  
...  

Surface upward longwave radiation (SULR) is a critical component in the calculation of the Earth’s surface radiation budget. Multiple clear-sky SULR estimation methods have been developed for high-spatial resolution satellite observations. Here, we comprehensively evaluated six SULR estimation methods, including the temperature-emissivity physical methods with the input of the MYD11/MYD21 (TE-MYD11/TE-MYD21), the hybrid methods with top-of-atmosphere (TOA) linear/nonlinear/artificial neural network regressions (TOA-LIN/TOA-NLIN/TOA-ANN), and the hybrid method with bottom-of-atmosphere (BOA) linear regression (BOA-LIN). The recently released MYD21 product and the BOA-LIN—a newly developed method that considers the spatial heterogeneity of the atmosphere—is used initially to estimate SULR. In addition, the four hybrid methods were compared with simulated datasets. All the six methods were evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) products and the Surface Radiation Budget Network (SURFRAD) in situ measurements. Simulation analysis shows that the BOA-LIN is the best one among four hybrid methods with accurate atmospheric profiles as input. Comparison of all the six methods shows that the TE-MYD21 performed the best, with a root mean square error (RMSE) and mean bias error (MBE) of 14.0 and −0.2 W/m2, respectively. The RMSE of BOA-LIN, TOA-NLIN, TOA-LIN, TOA-ANN, and TE-MYD11 are equal to 15.2, 16.1, 17.2, 21.2, and 18.5 W/m2, respectively. TE-MYD21 has a much better accuracy than the TE-MYD11 over barren surfaces (NDVI < 0.3) and a similar accuracy over non-barren surfaces (NDVI ≥ 0.3). BOA-LIN is more stable over varying water vapor conditions, compared to other hybrid methods. We conclude that this study provides a valuable reference for choosing the suitable estimation method in the SULR product generation.


2018 ◽  
Vol 31 (2) ◽  
pp. 671-691 ◽  
Author(s):  
Clara S. Draper ◽  
Rolf H. Reichle ◽  
Randal D. Koster

In the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2) system the land is forced by replacing the model-generated precipitation with observed precipitation before it reaches the surface. This approach is motivated by the expectation that the resultant improvements in soil moisture will lead to improved land surface latent heating (LH). Here aspects of the MERRA-2 land surface energy budget and 2-m air temperatures [Formula: see text] are assessed. For global land annual averages, MERRA-2 appears to overestimate the LH (by 5 W m−2), the sensible heating (by 6 W m−2), and the downwelling shortwave radiation (by 14 W m−2) while underestimating the downwelling and upwelling (absolute) longwave radiation (by 10–15 W m−2 each). These results differ only slightly from those for NASA’s previous reanalysis, MERRA. Comparison to various gridded reference datasets over boreal summer (June–August) suggests that MERRA-2 has particularly large positive biases (>20 W m−2) where LH is energy limited and that these biases are associated with evaporative fraction biases rather than radiation biases. For time series of monthly means during boreal summer, the globally averaged anomaly correlations [Formula: see text] with reference data were improved from MERRA to MERRA-2, for LH (from 0.39 to 0.48 vs Global Land Evaporation Amsterdam Model data) and the daily maximum T2m (from 0.69 to 0.75 vs Climatic Research Unit data). In regions where [Formula: see text] is particularly sensitive to the precipitation corrections (including the central United States, the Sahel, and parts of South Asia), the changes in the [Formula: see text] [Formula: see text] are relatively large, suggesting that the observed precipitation influenced the [Formula: see text] performance.


Sign in / Sign up

Export Citation Format

Share Document