scholarly journals Deep convolutional long short-term memory for forecasting wind speed and direction

Author(s):  
Anggraini Puspita Sari ◽  
Hiroshi Suzuki ◽  
Takahiro Kitajima ◽  
Takashi Yasuno ◽  
Dwi Arman Prasetya ◽  
...  
Author(s):  
Azim Heydari ◽  
Meysam Majidi Nezhad ◽  
Davide Astiaso Garcia ◽  
Farshid Keynia ◽  
Livio De Santoli

AbstractAir pollution monitoring is constantly increasing, giving more and more attention to its consequences on human health. Since Nitrogen dioxide (NO2) and sulfur dioxide (SO2) are the major pollutants, various models have been developed on predicting their potential damages. Nevertheless, providing precise predictions is almost impossible. In this study, a new hybrid intelligent model based on long short-term memory (LSTM) and multi-verse optimization algorithm (MVO) has been developed to predict and analysis the air pollution obtained from Combined Cycle Power Plants. In the proposed model, long short-term memory model is a forecaster engine to predict the amount of produced NO2 and SO2 by the Combined Cycle Power Plant, where the MVO algorithm is used to optimize the LSTM parameters in order to achieve a lower forecasting error. In addition, in order to evaluate the proposed model performance, the model has been applied using real data from a Combined Cycle Power Plant in Kerman, Iran. The datasets include wind speed, air temperature, NO2, and SO2 for five months (May–September 2019) with a time step of 3-h. In addition, the model has been tested based on two different types of input parameters: type (1) includes wind speed, air temperature, and different lagged values of the output variables (NO2 and SO2); type (2) includes just lagged values of the output variables (NO2 and SO2). The obtained results show that the proposed model has higher accuracy than other combined forecasting benchmark models (ENN-PSO, ENN-MVO, and LSTM-PSO) considering different network input variables. Graphic abstract


2020 ◽  
Vol 213 ◽  
pp. 112869 ◽  
Author(s):  
Sinvaldo Rodrigues Moreno ◽  
Ramon Gomes da Silva ◽  
Viviana Cocco Mariani ◽  
Leandro dos Santos Coelho

Author(s):  
Seyed Milad Mousavi ◽  
Majid Ghasemi ◽  
Mahsa Dehghan Manshadi ◽  
Amir Mosavi

Accurate forecasts of ocean waves energy can not only reduce costs for investment but it is also essential for management and operation of electrical power. This paper presents an innovative approach based on the Long Short Term Memory (LSTM) to predict the power generation of an economical wave energy converter named “Searaser”. The data for analyzing is provided by collecting the experimental data from another study and the exerted data from numerical simulation of searaser. The simulation is done with Flow-3D software which has high capability in analyzing the fluid solid interactions. The lack of relation between wind speed and output power in previous studies needs to be investigated in this field. Therefore, in this study the wind speed and output power are related with a LSTM method. Moreover, it can be inferred that the LSTM Network is able to predict power in terms of height more accurately and faster than the numerical solution in a field of predicting. The network output figures show a great agreement and the root mean square is 0.49 in the mean value related to the accuracy of LSTM method. Furthermore, the mathematical relation between the generated power and wave height was introduced by curve fitting of the power function to the result of LSTM method.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3901 ◽  
Author(s):  
Namrye Son ◽  
Seunghak Yang ◽  
Jeongseung Na

Renewable energy has recently gained considerable attention. In particular, the interest in wind energy is rapidly growing globally. However, the characteristics of instability and volatility in wind energy systems also affect power systems significantly. To address these issues, many studies have been carried out to predict wind speed and power. Methods of predicting wind energy are divided into four categories: physical methods, statistical methods, artificial intelligence methods, and hybrid methods. In this study, we proposed a hybrid model using modified LSTM (Long short-term Memory) to predict short-term wind power. The data adopted by modified LSTM use the current observation data (wind power, wind direction, and wind speed) rather than previous data, which are prediction factors of wind power. The performance of modified LSTM was compared among four multivariate models, which are derived from combining the current observation data. Among multivariable models, the proposed hybrid method showed good performance in the initial stage with Model 1 (wind power) and excellent performance in the middle to late stages with Model 3 (wind power, wind speed) in the estimation of short-term wind power. The experiment results showed that the proposed model is more robust and accurate in forecasting short-term wind power than the other models.


Sign in / Sign up

Export Citation Format

Share Document