Hybrid model using Bayesian neural network for variable refrigerant flow system

2021 ◽  
Vol 15 (1) ◽  
pp. 1-20
Author(s):  
Ki Uhn Ahn ◽  
Cheol Soo Park ◽  
Kyung-Jae Kim ◽  
Deuk-Woo Kim ◽  
Chang-U Chae
Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1122
Author(s):  
Oksana Mandrikova ◽  
Nadezhda Fetisova ◽  
Yuriy Polozov

A hybrid model for the time series of complex structure (HMTS) was proposed. It is based on the combination of function expansions in a wavelet series with ARIMA models. HMTS has regular and anomalous components. The time series components, obtained after expansion, have a simpler structure that makes it possible to identify the ARIMA model if the components are stationary. This allows us to obtain a more accurate ARIMA model for a time series of complicated structure and to extend the area for application. To identify the HMTS anomalous component, threshold functions are applied. This paper describes a technique to identify HMTS and proposes operations to detect anomalies. With the example of an ionospheric parameter time series, we show the HMTS efficiency, describe the results and their application in detecting ionospheric anomalies. The HMTS was compared with the nonlinear autoregression neural network NARX, which confirmed HMTS efficiency.


2021 ◽  
pp. 100079
Author(s):  
Vincent Fortuin ◽  
Adrià Garriga-Alonso ◽  
Mark van der Wilk ◽  
Laurence Aitchison

Author(s):  
GERALDO BRAZ JUNIOR ◽  
LEONARDO DE OLIVEIRA MARTINS ◽  
ARISTÓFANES CORREA SILVA ◽  
ANSELMO CARDOSO PAIVA

Female breast cancer is a major cause of deaths in occidental countries. Computer-aided Detection (CAD) systems can aid radiologists to increase diagnostic accuracy. In this work, we present a comparison between two classifiers applied to the separation of normal and abnormal breast tissues from mammograms. The purpose of the comparison is to select the best prediction technique to be part of a CAD system. Each region of interest is classified through a Support Vector Machine (SVM) and a Bayesian Neural Network (BNN) as normal or abnormal region. SVM is a machine-learning method, based on the principle of structural risk minimization, which shows good performance when applied to data outside the training set. A Bayesian Neural Network is a classifier that joins traditional neural networks theory and Bayesian inference. We use a set of measures obtained by the application of the semivariogram, semimadogram, covariogram, and correlogram functions to the characterization of breast tissue as normal or abnormal. The results show that SVM presents best performance for the classification of breast tissues in mammographic images. The tests indicate that SVM has more generalization power than the BNN classifier. BNN has a sensibility of 76.19% and a specificity of 79.31%, while SVM presents a sensibility of 74.07% and a specificity of 98.77%. The accuracy rate for tests is 78.70% and 92.59% for BNN and SVM, respectively.


2021 ◽  
pp. 1-16
Author(s):  
Hasmat Malik ◽  
Majed A. Alotaibi ◽  
Abdulaziz Almutairi

The electric load forecasting (ELF) is a key area of the modern power system (MPS) applications and also for the virtual power plant (VPP) analysis. The ELF is most prominent for the distinct applications of MPS and VPP such as real-time analysis of energy storage system, distributed energy resources, demand side management and electric vehicles etc. To manage the real-time challenges and map the stable power demand, in different time steps, the ELF is evaluated in yearly, monthly, weekly, daily, and hourly, etc. basis. In this study, an intelligent load predictor which is able to forecast the electric load for next month or day or hour is proposed. The proposed approach is a hybrid model combining empirical mode decomposition (EMD) and neural network (NN) for multi-step ahead load forecasting. The model performance is demonstrated by suing historical dataset collected form GEFCom2012 and GEFCom2014. For the demonstration of the performance, three case studies are analyzed into two categories. The demonstrated results represents the higher acceptability of the proposed approach with respect to the standard value of MAPE (mean absolute percent error).


Author(s):  
Ning He ◽  
Cheng Qian ◽  
Lile He

Abstract As an important energy storage device, lithium-ion batteries have vast applications in daily production and life. Therefore, the remaining useful life prediction of such batteries is of great significance, which can maintain the efficacy and reliability of the system powered by lithium-ion batteries. For predicting remaining useful life of lithium-ion batteries accurately, an adaptive hybrid battery model and an improved particle filter are developed. Firstly, the adaptive hybrid model is constructed, which is a combination of empirical model and long-short term memory neural network model such that it could characterize battery capacity degradation trend more effectively. In addition, the adaptive adjustment of the parameters for hybrid model is realized via optimization technique. Then, the beetle antennae search based particle filter is applied to update the battery states offline constructed by the proposed adaptive hybrid model, which can improve the estimation accuracy. Finally, remaining useful life short-term prediction is realized online based on long short-term memory neural network rolling prediction combined historical capacity with online measurements and latest offline states and model parameters. The battery data set published by NASA is used to verify the effectiveness of proposed strategy. The experimental results indicate that the proposed adaptive hybrid model can well represent the battery degradation characteristics, and have a higher accuracy compared with other models. The short-term remaining useful life prediction results have good performance with the errors of 1 cycle, 3 cycles, and 1 cycle, above results indicate proposed scheme has a good performance on short-term remaining useful life prediction.


Sign in / Sign up

Export Citation Format

Share Document