scholarly journals Hybrid Model for Time Series of Complex Structure with ARIMA Components

Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1122
Author(s):  
Oksana Mandrikova ◽  
Nadezhda Fetisova ◽  
Yuriy Polozov

A hybrid model for the time series of complex structure (HMTS) was proposed. It is based on the combination of function expansions in a wavelet series with ARIMA models. HMTS has regular and anomalous components. The time series components, obtained after expansion, have a simpler structure that makes it possible to identify the ARIMA model if the components are stationary. This allows us to obtain a more accurate ARIMA model for a time series of complicated structure and to extend the area for application. To identify the HMTS anomalous component, threshold functions are applied. This paper describes a technique to identify HMTS and proposes operations to detect anomalies. With the example of an ionospheric parameter time series, we show the HMTS efficiency, describe the results and their application in detecting ionospheric anomalies. The HMTS was compared with the nonlinear autoregression neural network NARX, which confirmed HMTS efficiency.

2017 ◽  
Vol 145 (6) ◽  
pp. 1118-1129 ◽  
Author(s):  
K. W. WANG ◽  
C. DENG ◽  
J. P. LI ◽  
Y. Y. ZHANG ◽  
X. Y. LI ◽  
...  

SUMMARYTuberculosis (TB) affects people globally and is being reconsidered as a serious public health problem in China. Reliable forecasting is useful for the prevention and control of TB. This study proposes a hybrid model combining autoregressive integrated moving average (ARIMA) with a nonlinear autoregressive (NAR) neural network for forecasting the incidence of TB from January 2007 to March 2016. Prediction performance was compared between the hybrid model and the ARIMA model. The best-fit hybrid model was combined with an ARIMA (3,1,0) × (0,1,1)12 and NAR neural network with four delays and 12 neurons in the hidden layer. The ARIMA-NAR hybrid model, which exhibited lower mean square error, mean absolute error, and mean absolute percentage error of 0·2209, 0·1373, and 0·0406, respectively, in the modelling performance, could produce more accurate forecasting of TB incidence compared to the ARIMA model. This study shows that developing and applying the ARIMA-NAR hybrid model is an effective method to fit the linear and nonlinear patterns of time-series data, and this model could be helpful in the prevention and control of TB.


Author(s):  
Ta Quoc Bao ◽  
Le Nhat Tan ◽  
Le Thi Thanh An ◽  
Bui Thi Thien My

Forecasting stock index is a crucial financial problem which is recently received a lot of interests in the field of artificial intelligence. In this paper we are going to study some hybrid artificial neural network models. As main result, we show that hybrid models offer us effective tools to forecast stock index accurately. Within this study, we have analyzed the performance of classical models such as Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Network (ANN) model and the Hybrid model, in connection with real data coming from Vietnam Index (VNINDEX). Based on some previous foreign data sets, for most of the complex time series, the novel hybrid models have a good performance comparing to individual models like ARIMA and ANN. Regarding Vietnamese stock market, our results also show that the Hybrid model gives much better forecasting accuracy compared with ARIMA and ANN models. Specifically, our results tell that the Hybrid combination model delivers smaller Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) than ARIMA and ANN models. The fitting curves demonstrate that the Hybrid model produces closer trend so better describing the actual data. Via our study with Vietnam Index, it is confirmed that the characteristics of ARIMA model are more suitable for linear time series while ANN model is good to work with nonlinear time series. The Hybrid model takes into account both of these features, so it could be employed in case of more generalized time series. As the financial market is increasingly complex, the time series corresponding to stock indexes naturally consist of linear and non-linear components. Because of these characteristic, the Hybrid ARIMA model with ANN produces better prediction and estimation than other traditional models.  


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shaobo Lu

Based on the BP neural network and the ARIMA model, this paper predicts the nonlinear residual of GDP and adds the predicted values of the two models to obtain the final predicted value of the model. First, the focus is on the ARMA model in the univariate time series. However, in real life, forecasts are often affected by many factors, so the following introduces the ARIMAX model in the multivariate time series. In the prediction process, the network structure and various parameters of the neural network are not given in a systematic way, so the operation of the neural network is affected by many factors. Each forecasting method has its scope of application and also has its own weaknesses caused by the characteristics of its own model. Secondly, this paper proposes an effective combination method according to the GDP characteristics and builds an improved algorithm BP neural network price prediction model, the research on the combination of GDP prediction model is currently mostly focused on the weighted form, and this article proposes another combination, namely, error correction. According to the price characteristics, we determine the appropriate number of hidden layer nodes and build a BP neural network price prediction model based on the improved algorithm. Validation of examples shows that the error-corrected GDP forecast model is also better than the weighted GDP forecast model, which shows that error correction is also a better combination of forecasting methods. The forecast results of BP neural network have lower errors and monthly prices. The relative error of prediction is about 2.5%. Through comparison with the prediction results of the ARIMA model, in the daily price prediction, the relative error of the BP neural network prediction is 1.5%, which is lower than the relative error of the ARIMA model of 2%.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 610 ◽  
Author(s):  
Xinghan Xu ◽  
Weijie Ren

The prediction of chaotic time series has been a popular research field in recent years. Due to the strong non-stationary and high complexity of the chaotic time series, it is difficult to directly analyze and predict depending on a single model, so the hybrid prediction model has become a promising and favorable alternative. In this paper, we put forward a novel hybrid model based on a two-layer decomposition approach and an optimized back propagation neural network (BPNN). The two-layer decomposition approach is proposed to obtain comprehensive information of the chaotic time series, which is composed of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational mode decomposition (VMD). The VMD algorithm is used for further decomposition of the high frequency subsequences obtained by CEEMDAN, after which the prediction performance is significantly improved. We then use the BPNN optimized by a firefly algorithm (FA) for prediction. The experimental results indicate that the two-layer decomposition approach is superior to other competing approaches in terms of four evaluation indexes in one-step and multi-step ahead predictions. The proposed hybrid model has a good prospect in the prediction of chaotic time series.


2012 ◽  
Author(s):  
Ruhaidah Samsudin ◽  
Puteh Saad ◽  
Ani Shabri

In this paper, time series prediction is considered as a problem of missing value. A model for the determination of the missing time series value is presented. The hybrid model integrating autoregressive intergrated moving average (ARIMA) and artificial neural network (ANN) model is developed to solve this problem. The developed models attempts to incorporate the linear characteristics of an ARIMA model and nonlinear patterns of ANN to create a hybrid model. In this study, time series modeling of rice yield data in Muda Irrigation area. Malaysia from 1995 to 2003 are considered. Experimental results with rice yields data sets indicate that the hybrid model improve the forecasting performance by either of the models used separately. Key words: ARIMA; Box and Jenkins; neural networks; rice yields; hybrid ANN model


1970 ◽  
Vol 8 (1) ◽  
pp. 103-112 ◽  
Author(s):  
NMF Rahman

The study was undertaken to examine the best fitted ARIMA model that could be used to make efficient forecast boro rice production in Bangladesh from 2008-09 to 2012-13. It appeared from the study that local, modern and total boro time series are 1st order homogenous stationary. It is found from the study that the ARIMA (0,1,0) ARIMA (0,1,3) and ARIMA (0,1,2) are the best for local, modern and total boro rice production respectively. It is observed from the analysis that short term forecasts are more efficient for ARIMA models. The production uncertainty of boro rice can be minimizing if production can be forecasted well and necessary steps can be taken against losses. The government and producer as well use ARIMA methods to forecast future production more accurately in the short run. Keywords: Production; ARIMA model; Forecasting. DOI: 10.3329/jbau.v8i1.6406J. Bangladesh Agril. Univ. 8(1): 103-112, 2010


2002 ◽  
Vol 6 (1) ◽  
pp. 53-65 ◽  
Author(s):  
María-Dolores Cubiles-de-la-Vega ◽  
Rafael Pino-Mejías ◽  
Antonio Pascual-Acosta ◽  
Joaquín Muñoz-García

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yihuai Huang ◽  
Chao Xu ◽  
Mengzhong Ji ◽  
Wei Xiang ◽  
Da He

Abstract Background Accurate forecasting of medical service demand is beneficial for the reasonable healthcare resource planning and allocation. The daily outpatient volume is characterized by randomness, periodicity and trend, and the time series methods, like ARIMA are often used for short-term outpatient visits forecasting. Therefore, to further enlarge the prediction horizon and improve the prediction accuracy, a hybrid prediction model integrating ARIMA and self-adaptive filtering method is proposed. Methods The ARIMA model is first used to identify the features like cyclicity and trend of the time series data and to estimate the model parameters. The parameters are then adjusted by the steepest descent algorithm in the adaptive filtering method to reduce the prediction error. The hybrid model is validated and compared with traditional ARIMA by several test sets from the Time Series Data Library (TSDL), a weekly emergency department (ED) visit case from literature study, and the real cases of prenatal examinations and B-ultrasounds in a maternal and child health care center (MCHCC) in Ningbo. Results For TSDL cases the prediction accuracy of the hybrid prediction is improved by 80–99% compared with the ARIMA model. For the weekly ED visit case, the forecasting results of the hybrid model are better than those of both traditional ARIMA and ANN model, and similar to the ANN combined data decomposition model mentioned in the literature. For the actual data of MCHCC in Ningbo, the MAPE predicted by the ARIMA model in the two departments was 18.53 and 27.69%, respectively, and the hybrid models were 2.79 and 1.25%, respectively. Conclusions The hybrid prediction model outperforms the traditional ARIMA model in both accurate predicting result with smaller average relative error and the applicability for short-term and medium-term prediction.


Sign in / Sign up

Export Citation Format

Share Document