Evaluation of operational parameters from a microfiltration system for indigo blue dye recovery from textile dye effluent

2013 ◽  
Vol 52 (1-3) ◽  
pp. 257-266 ◽  
Author(s):  
Míriam Cristina Santos Amaral ◽  
Luzia Sergina França Neta ◽  
Mariana Souza ◽  
Naiara Cerqueira ◽  
Roberto Bentes de Carvalho
2021 ◽  
Author(s):  
Rafaela De Maman ◽  
Vilson Conrado da Luz ◽  
Laura Behling ◽  
Adriana Dervanoski ◽  
Clarissa Dalla Rosa ◽  
...  

Abstract The Indigo Blue dye is widely used in the textile industry, specifically in jeans dyeing, the effluents of which, rich in organic pollutants with recalcitrant characteristics, end up causing several environmental impacts, requiring efficient treatments. Several pieces of research have been conducted in search of effective treatment methods, among which is electrocoagulation. This treatment consists of an electrochemical process that generates its own coagulant by applying electric current on metallic electrodes, bypassing the use of other chemical products. The objective of this work was to evaluate the potential use of iron slag in the electrocoagulation of a synthetic effluent containing commercial dye Indigo Blue and the effluent from a textile factory. The quantified parameters were color, turbidity, pH, electrical conductivity, sludge generation, phenol removal, chemical oxygen demand (COD), and total organic carbon (TOC). The electrocoagulation treatment presented a good efficiency in removing the analyzed parameters, obtaining average removal in the synthetic effluent of 85 % of color and 100 % of phenol after 25 min of electrolysis. For the effluent from the textile factory, average reductions of 80 % of color, 91 % of turbidity, 100 % of phenol, 55 % of COD, and 73 % of TOC were measured after 60 min of electrolysis. The results obtained demonstrate the potential of using iron slag as an electrode in the electrocoagulation process in order to reuse industrial waste and reduce costs in the treatment and disposal of solid waste.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2532 ◽  
Author(s):  
Md. Nahid Pervez ◽  
Felix Y. Telegin ◽  
Yingjie Cai ◽  
Dongsheng Xia ◽  
Tiziano Zarra ◽  
...  

In this study, a Fenton-activated persulfate (Fe2+/PS) system was introduced for the efficient degradation of Mordant Blue 9 (MB 9) as a textile dye in an aqueous solution. Results showed that the degradation of MB 9 was markedly influenced by operational parameters, such as initial pH, PS concentration, Fe2+ concentration, and initial dye concentration. Optimal reaction conditions were then determined. Inorganic anions, such as Cl− and HCO3−, enhanced the degradation efficiency of MB 9 under optimal conditions. Addition of HCO3− reduced the degradation performance of MB 9, whereas the addition of Cl− increased the degradation percentage of MB 9. In addition, quenching experiments were conducted using methanol and tert-butyl alcohol as scavengers, and methanol was identified as an effective scavenger. Thus, the degradation of MB 9 was attributed to S O 4 • − and •OH radicals. The degradation and mineralization efficiency of MB 9 was significantly reduced using the conventional Fenton process i.e., Fe2+/ hydrogen peroxide (HP) because of the formation of a Fe complex during degradation. Meanwhile, the Fe2+/persulfate (PS) system improved the degradation and mineralization performance.


2009 ◽  
Vol 3 (5) ◽  
Author(s):  
B Manikandan ◽  
V. Ramamurthi ◽  
R. Karthikeyan ◽  
T.R. Sundararaman

2013 ◽  
Vol 47 (4) ◽  
pp. 445-448 ◽  
Author(s):  
MH Kabir ◽  
MF Kabir ◽  
F Nigar ◽  
S Ahmed ◽  
AI Mustafa ◽  
...  

Photocatalytic composite materials incorporating the photocatalysts (TiO2, ZnO) with rice husk ash (RHA) have been developed to investigate the photodegradation of real textile dye effluent. The structural characterization of the composite materials was performed using XRD (X-Ray Diffractometer). The characteristic XRD peaks together with the 2? values for both TiO2 and ZnO were in excellent agreement with the standard JCPDS d-values. The efficacy of these composites was examined through the degradation of a textile dye, collected from a local dye house. The sun light was used as the source of illumination for the preceding degradation reaction. Bangladesh J. Sci. Ind. Res. 47(4), 445-448, 2012 DOI: http://dx.doi.org/10.3329/bjsir.v47i4.14075


2020 ◽  
Vol 39 (5) ◽  
Author(s):  
Karishma Maheshwari ◽  
Yogendra S. Solanki ◽  
Md Sabbir Hossain Ridoy ◽  
Madhu Agarwal ◽  
Rajeev Dohare ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
pp. 82 ◽  
Author(s):  
Robledo-Padilla ◽  
Aquines ◽  
Silva-Núñez ◽  
Alemán-Nava ◽  
Castillo-Zacarías ◽  
...  

Among the different chemical and physical treatments used to remove the color of the textile effluents, bioremediation offers many benefits to the environment. In this study, we determined the potential of Spirulina platensis (S. platensis) for decolorizing indigo blue dye under different incubation conditions. The microalgae were incubated at different pH (from 4 to 10) to calibrate for the optimal discoloration condition; a pH of 4 was found to be optimal. The biomass concentration in all experiments was 1 g/L, which was able to decolorize the indigo blue dye by day 3. These results showed that S. platensis is capable of removing indigo blue dye at low biomass. However, this was dependent on the treatment conditions, where temperature played the most crucial role. Two theoretical adsorption models, namely (1) a first-order model equation and (2) a second-order rate equation, were compared with observed adsorption vs. time curves for different initial concentrations (from 25 to 100 mg/L). The comparison between models showed similar accuracy and agreement with the experimental values. The observed adsorption isotherms for three temperatures (30, 40, and 50 °C) were plotted, showing fairly linear behavior in the measured range. The adsorption equilibrium isotherms were estimated, providing an initial description of the dye removal capacity of S. platensis.


Sign in / Sign up

Export Citation Format

Share Document