Calibrating partial safety factors in line with required reliability levels for concrete structures

Author(s):  
Yi Zhang ◽  
François Toutlemonde
2019 ◽  
Vol 12 (6) ◽  
pp. 1288-1304
Author(s):  
W. C. SANTIAGO ◽  
H. M. KROETZ ◽  
A. T. BECK

Abstract This paper presents a reliability-based calibration of partial safety factors for Brazilian codes used in the design of concrete structures. The work is based on reliability theory, which allows an explicit representation of the uncertainties involved in terms of resistances and loads. Regarding the resistances, this study considers beams with concrete of five classes (C20, C30, C40, C50 and C60), three ratios between base and effective depth (0.25, 0.50 and 0.75), three longitudinal reinforcement ratios (ρmin, 0.5% and ρmax) and three transverse reinforcement ratios ( A s s m i n, 5 . A s s m i n and A s s m a x). In terms of loads, this work considers seven ratios between live loads and permanent loads (qn/gn), and seven ratios between wind loads and permanent loads (wn/gn). The study also adopts a single value for the target reliability index (βtarget = 3.0). Results show that the optimized set of partial safety factors leads to more uniform reliability for different design situations and load combinations.


2015 ◽  
Vol 8 (3) ◽  
pp. 365-389
Author(s):  
D. COUTO ◽  
M. CARVALHO ◽  
A. CINTRA ◽  
P. HELENE

The safety evaluation of an existing concrete structure differs from the design of new structures. The partial safety factors for actions and resistances adopted in the design phase consider uncertainties and inaccuracies related to the building processes of structures, variability of materials strength and numerical approximations of the calculation and design processes. However, when analyzing a finished structure, a large number of unknown factors during the design stage are already defined and can be measured, which justifies a change in the increasing factors of the actions or reduction factors of resistances. Therefore, it is understood that safety assessment in existing structures is more complex than introducing security when designing a new structure, because it requires inspection, testing, analysis and careful diagnose. Strong knowledge and security concepts in structural engineering are needed, as well as knowledge about the materials of construction employed, in order to identify, control and properly consider the variability of actions and resistances in the structure. With the intention of discussing this topic considered complex and diffuse, this paper presents an introduction to the safety of concrete structures, a synthesis of the recommended procedures by Brazilian standards and another codes, associated with the topic, as well a realistic example of the safety assessment of an existing structure.


Author(s):  
Yordan Garbatov ◽  
C. Guedes Soares

The work presented here analyses the structural corrosion degradation of two sets of corrosion depth measurements collected with a one-decade difference. The corrosion degradation process is associated to a first order system, subjected to a sudden disturbance, where a step function is used as an input to define the solution of the differential equation of this system leads to the exponential corrosion degradation model as developed earlier. Corrosion margins of redundant ship structures with serious consequences of failure are derived and several conclusions related to the new trend in the ageing structures are presented and discussed. Partial safety factors with respect to the corrosion environment and corrosion margins are developed that can be used in the design, avoiding a complex probabilistic analysis.


2019 ◽  
Vol 103 (4) ◽  
pp. 2741-2756 ◽  
Author(s):  
Antonio Bonati ◽  
Gabriele Pisano ◽  
Gianni Royer Carfagni

2011 ◽  
Vol 255-260 ◽  
pp. 338-344 ◽  
Author(s):  
Ying Wang ◽  
Feng Lin ◽  
Xiang Lin Gu

Due to the absence of provision for the load and resistance factors in design codes in China, designers often quote the provisions which are given in criterion or guidance of other countries such as USA. However, the partial safety factors of the load are various in different criterions. Based on the reliability theory, the load and resistance factors for progressive collapse resistance design of building structures were determined in this study. Firstly the simplified format of design expression in the ultimate state was obtained according to the expression in routine structural design. Then the failure probability of a structure during design reference period was taken as the sum of the probability of all incompatible failure events in this period, and the objective reliability index of the structure could be obtained. Finally using trial-and-error procedure and JC method, reliability analysis was performed for structural members to obtain the partial safety factors of load effects and resistance and the coefficient for combination value of load effects in design expression in the ultimate state. In this paper the load and resistance factors for progressive collapse resistance design of reinforced concrete structures subjected to blast was calculated as an example, and the recommendation values were given for the application at last.


Author(s):  
Hideo Machida ◽  
Hiromasa Chitose ◽  
Manabu Arakawa

This paper describes the evaluation of partial safety factors (PSF’s) for parameters related to flaw evaluation of pipes which have a circumferential surface flaw, and proposes the important matter which should be pay attention in the setup of the safety factors used in flaw evaluation. PSF’s were evaluated considering randomness of flaw size, a fracture resistance curve (J-R curve) and applied loads using load and resistance factor design method (LRFD). The limit state function is expressed by fracture resistance (resistance-related parameter) and applied J integral (load-related parameter). The measure parameters in the reliability assessment are the flaw size and the J-R curve, and PSF’s of them are larger than those of applied loads. Since the material properties used in the flaw evaluation are generally set to the engineering lower limit of their variation (e.g., 95% lower confidence limit), variation of the flaw size is considered to have important role on flaw evaluation. Therefore, when setting up the safely factors used in Rules on Fitness-for-Service (FFS), it is necessary to take into consideration not only the influence of variation of loads or material strength but the influence of variation of flaw size.


Sign in / Sign up

Export Citation Format

Share Document