scholarly journals Functionality of the human antibody response to Candida albicans

Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 3137-3148
Author(s):  
Melissa Wich ◽  
Stephanie Greim ◽  
Marta Ferreira-Gomes ◽  
Thomas Krüger ◽  
Olaf Kniemeyer ◽  
...  
Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 785
Author(s):  
Maurizio Guida ◽  
Daniela Terracciano ◽  
Michele Cennamo ◽  
Federica Aiello ◽  
Evelina La Civita ◽  
...  

Objective: The objective of this research is to demonstrate the release of SARS-CoV-2 Spike (S) antibodies in human milk samples obtained by patients who have been vaccinated with mRNABNT162b2 vaccine. Methods: Milk and serum samples were collected in 10 volunteers 20 days after the first dose and 7 seven days after the second dose of the mRNABNT162b2 vaccine. Anti-SARS-CoV-2 S antibodies were measured by the Elecsys® Anti-SARS-CoV-2 S ECLIA assay (Roche Diagnostics AG, Rotkreuz, Switzerland), a quantitative electrochemiluminescence immunometric method. Results: At first sample, anti-SARS-CoV-2 S antibodies were detected in all serum samples (103.9 ± 54.9 U/mL) and only in two (40%) milk samples with a low concentration (1.2 ± 0.3 U/mL). At the second sample, collected 7 days after the second dose, anti-SARS-CoV-2 S antibodies were detected in all serum samples (3875.7 ± 3504.6 UI/mL) and in all milk samples (41.5 ± 47.5 UI/mL). No correlation was found between the level of serum and milk antibodies; the milk antibodies/serum antibodies ratio was on average 2% (range: 0.2–8.4%). Conclusion: We demonstrated a release of anti-SARS-CoV-2 S antibodies in the breast milk of women vaccinated with mRNABNT162b2. Vaccinating breastfeeding women could be a strategy to protect their infants from COVID-19 infection.


2009 ◽  
Vol 83 (23) ◽  
pp. 12355-12367 ◽  
Author(s):  
Mohammed Rafii-El-Idrissi Benhnia ◽  
Megan M. McCausland ◽  
John Laudenslager ◽  
Steven W. Granger ◽  
Sandra Rickert ◽  
...  

ABSTRACT Antibodies against the extracellular virion (EV or EEV) form of vaccinia virus are an important component of protective immunity in animal models and likely contribute to the protection of immunized humans against poxviruses. Using fully human monoclonal antibodies (MAbs), we now have shown that the protective attributes of the human anti-B5 antibody response to the smallpox vaccine (vaccinia virus) are heavily dependent on effector functions. By switching Fc domains of a single MAb, we have definitively shown that neutralization in vitro—and protection in vivo in a mouse model—by the human anti-B5 immunoglobulin G MAbs is isotype dependent, thereby demonstrating that efficient protection by these antibodies is not simply dependent on binding an appropriate vaccinia virion antigen with high affinity but in fact requires antibody effector function. The complement components C3 and C1q, but not C5, were required for neutralization. We also have demonstrated that human MAbs against B5 can potently direct complement-dependent cytotoxicity of vaccinia virus-infected cells. Each of these results was then extended to the polyclonal human antibody response to the smallpox vaccine. A model is proposed to explain the mechanism of EV neutralization. Altogether these findings enhance our understanding of the central protective activities of smallpox vaccine-elicited antibodies in immunized humans.


iScience ◽  
2021 ◽  
pp. 102540
Author(s):  
André Azevedo Reis Teixeira ◽  
Luis Rodriguez Carnero ◽  
Andréia Kuramoto ◽  
Fenny Hui Fen Tang ◽  
Carlos Hernique Gomes ◽  
...  

mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
pp. e00590-17
Author(s):  
P. Martijn den Reijer ◽  
Mehri Tavakol ◽  
Nicole Lemmens-den Toom ◽  
Dikra Allouch ◽  
Sheila Thomas ◽  
...  

ABSTRACTThe fibronectin-binding protein A (FnBPA) is a cell surface-associated protein ofStaphylococcus aureuswhich mediates adherence to the host extracellular matrix and is important for bacterial virulence. Previously, substantial sequence diversity was found among strains in the fibrinogen-binding A domain of this protein, and 7 different isotypes were described. The effect of this sequence diversity on the human antibody response, in terms of both antibody production and antibody function, remains unclear. In this study, we identify five different FnBPA A domain isotypes based on the sequence results of 22 clinicalS. aureusisolates, obtained from the same number of patients suffering from bacteremia. Using a bead-based Luminex technique, we measure the patients’ total immunoglobulin G (IgG) against the 7 FnBPA isotypes at the onset and during the time course of bacteremia (median of 10 serum samples per patient over a median of 35 days). A significant increase in IgG against the FnBPA A domain, including the isotype carried by the infecting strain, is observed in only three out of 22 patients (14%) after the onset of bacteremia. Using a Luminex-based FnBPA–fibrinogen-binding assay, we find that preincubation of recombinant FnBPA isotypes with IgG from diverse patients does not interfere with binding to fibrinogen. This observation is confirmed using an alternative Luminex-based assay and enzyme-linked immunosorbent assay (ELISA).IMPORTANCEDespite the manyin vitroand murinein vivostudies involving FnBPA, the actual presence of this virulence factor during human infection is less well established. Furthermore, it is currently unknown to what extent sequence variation in such a virulence factor affects the human antibody response and the ability of antibodies to interfere with FnBPA function. This study sheds new light on these issues. First, the uniform presence of a patient’s IgG against FnBPA indicates the presence and importance of this virulence factor duringS. aureuspathogenesis. Second, the absence of an increase in antibody production in most patients following bacteremia indicates the complexity ofS. aureus-host interactions, possibly involving immune evasion or lack of expression of FnBPA during invasive infection. Finally, we provide new insights into the inability of human antibodies to interfere with FnBPA-fibrinogen binding. These observations should be taken into account during the development of novel vaccination approaches.


1991 ◽  
Vol 87 (6) ◽  
pp. 1080-1088 ◽  
Author(s):  
David H. Frank ◽  
Leslie Vakassian ◽  
Jack C. Fisher ◽  
Nuri Ozkan

mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Preston S. K. Ng ◽  
Christopher J. Day ◽  
John M. Atack ◽  
Lauren E. Hartley-Tassell ◽  
Linda E. Winter ◽  
...  

ABSTRACTNontypeableHaemophilus influenzae(NTHi) is a Gram-negative bacterial pathogen that is adapted exclusively to human hosts. NTHi utilizes sialic acid from the host as a carbon source and as a terminal sugar on the outer membrane glycolipid lipooligosaccharide (LOS). Sialic acid expressed on LOS is critical in NTHi biofilm formation and immune evasion. There are two major forms of sialic acids in most mammals,N-acetylneuraminic acid (Neu5Ac) andN-glycolylneuraminic acid (Neu5Gc), the latter of which is derived from Neu5Ac. Humans lack the enzyme to convert Neu5Ac to Neu5Gc and do not express Neu5Gc in normal tissues; instead, Neu5Gc is recognized as a foreign antigen. A recent study showed that dietary Neu5Gc can be acquired by NTHi colonizing humans and then presented on LOS, which acts as an antigen for the initial induction of anti-Neu5Gc antibodies. Here we examined Neu5Gc uptake and presentation on NTHi LOS. We show that, although Neu5Gc and Neu5Ac are utilized equally well as sole carbon sources, Neu5Gc is not incorporated efficiently into LOS. When equal amounts of Neu5Gc and Neu5Ac are provided in culture media, there is ∼4-fold more Neu5Ac incorporated into LOS, suggesting a bias in a step of the LOS biosynthetic pathway. CMP-Neu5Ac synthetase (SiaB) was shown to have ∼4,000-fold-higher catalytic efficiency for Neu5Ac than for Neu5Gc. These data suggest that NTHi has adapted preferential utilization of Neu5Ac, thus avoiding presentation of the nonhuman Neu5Gc in the bacterial cell surface. The selective pressure for this adaptation may represent the human antibody response to the Neu5Gc xenoantigen.IMPORTANCEHost-adapted bacterial pathogens such as NTHi cannot survive out of their host environment and have evolved host-specific mechanisms to obtain nutrients and evade the immune response. Relatively few of these host adaptations have been characterized at the molecular level. NTHi utilizes sialic acid as a nutrient and also incorporates this sugar into LOS, which is important in biofilm formation and immune evasion. In the present study, we showed that NTHi has evolved to preferentially utilize the Neu5Ac form of sialic acid. This adaptation is due to the substrate preference of the enzyme CMP-Neu5Ac synthetase, which synthesizes the activated form of Neu5Ac for macromolecule biosynthesis. This adaptation allows NTHi to evade killing by a human antibody response against the nonhuman sialic acid Neu5Gc.


Sign in / Sign up

Export Citation Format

Share Document