Assessing the impact of land cover map resolution and geolocation accuracy on evapotranspiration simulations by a land surface model

2014 ◽  
Vol 5 (5) ◽  
pp. 491-499 ◽  
Author(s):  
N. Ghilain ◽  
F. Gellens-Meulenberghs
2020 ◽  
Author(s):  
Souhail Boussetta ◽  
Gianpaolo Balsamo ◽  
Emanuel Arduini ◽  
Miguel Nogueira ◽  
Gabriele Arduini ◽  
...  

<p><span><span>The effects of vegetation and land use/land cover maps on surface energy and carbon fluxes predictions from land surface model are investigated. The model is applied at global scale and a comparison between two configurations using different land cover maps is performed. In the first configuration, the land cover is based on the operational GLCCv1.2 map, in the second the ESA-CCI land cover map is used.</span></span></p><p><span><span>Based on these two configurations, the observation operator that disaggregates the satellite-based leaf area index into high and low vegetation components is also modified to ensure optimal conservation of the observed LAI. The Seasonal variability of the vegetation cover is also investigated by introducing a modified lamber-beer formulation that allows varying the vegetation cover as a function of the LAI. </span></span></p>


2015 ◽  
Vol 8 (6) ◽  
pp. 1857-1876 ◽  
Author(s):  
J. J. Guerrette ◽  
D. K. Henze

Abstract. Here we present the online meteorology and chemistry adjoint and tangent linear model, WRFPLUS-Chem (Weather Research and Forecasting plus chemistry), which incorporates modules to treat boundary layer mixing, emission, aging, dry deposition, and advection of black carbon aerosol. We also develop land surface and surface layer adjoints to account for coupling between radiation and vertical mixing. Model performance is verified against finite difference derivative approximations. A second-order checkpointing scheme is created to reduce computational costs and enable simulations longer than 6 h. The adjoint is coupled to WRFDA-Chem, in order to conduct a sensitivity study of anthropogenic and biomass burning sources throughout California during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign. A cost-function weighting scheme was devised to reduce the impact of statistically insignificant residual errors in future inverse modeling studies. Results of the sensitivity study show that, for this domain and time period, anthropogenic emissions are overpredicted, while wildfire emission error signs vary spatially. We consider the diurnal variation in emission sensitivities to determine at what time sources should be scaled up or down. Also, adjoint sensitivities for two choices of land surface model (LSM) indicate that emission inversion results would be sensitive to forward model configuration. The tools described here are the first step in conducting four-dimensional variational data assimilation in a coupled meteorology–chemistry model, which will potentially provide new constraints on aerosol precursor emissions and their distributions. Such analyses will be invaluable to assessments of particulate matter health and climate impacts.


Author(s):  
Nemesio Rodriguez-Fernandez ◽  
Patricia de Rosnay ◽  
Clement Albergel ◽  
Philippe Richaume ◽  
Filipe Aires ◽  
...  

The assimilation of Soil Moisture and Ocean Salinity (SMOS) data into the ECMWF (European Centre for Medium Range Weather Forecasts) H-TESSEL (Hydrology revised - Tiled ECMWF Scheme for Surface Exchanges over Land) model is presented. SMOS soil moisture (SM) estimates have been produced specifically by training a neural network with SMOS brightness temperatures as input and H-TESSEL model SM simulations as reference. This can help the assimilation of SMOS information in several ways: (1) the neural network soil moisture (NNSM) data have a similar climatology to the model, (2) no global bias is present with respect to the model even if regional differences can exist. Experiments performing joint data assimilation (DA) of NNSM, 2 metre air temperature and relative humidity or NNSM-only DA are discussed. The resulting SM was evaluated against a large number of in situ measurements of SM obtaining similar results to those of the model with no assimilation, even if significant differences were found from site to site. In addition, atmospheric forecasts initialized with H-TESSEL runs (without DA) or with the analysed SM were compared to measure of the impact of the satellite information. Although, NNSM DA has an overall neutral impact in the forecast in the Tropics, a significant positive impact was found in other areas and periods, especially in regions with limited in situ information. The joint NNSM, T2m and RH2m DA improves the forecast for all the seasons in the Southern Hemisphere. The impact is mostly due to T2m and RH2m, but SMOS NN DA alone also improves the forecast in July- September. In the Northern Hemisphere, the joint NNSM, T2m and RH2m DA improves the forecast in April-September, while NNSM alone has a significant positive effect in July-September. Furthermore, forecasting skill maps show that SMOS NNSM improves the forecast in North America and in Northern Asia for up to 72 hours lead time.


2021 ◽  
Author(s):  
Jaime Gaona ◽  
Pere Quintana-Seguí ◽  
Maria José Escorihuela

<p>Droughts in the Iberian Peninsula are a natural hazard of great relevance due to their recurrence, severity and impact on multiple environmental and socioeconomic aspects. The Ebro Basin, located in the NE of the Iberian Peninsula, is particularly vulnerable to drought with consequences on agriculture, urban water supply and hydropower. This study, performed within the Project HUMID (CGL2017-85687-R), aims at evaluating the influence of the climatic, land cover and soil characteristics on the interactions between rainfall, evapotranspiration and soil moisture anomalies which define the spatio-temporal drought patterns in the basin.</p><p>The onset, propagation and mitigation of droughts in the Iberian Peninsula is driven by anomalies of rainfall, evapotranspiration and soil moisture, which are related by feedback processes. To test the relative importance of such anomalies, we evaluate the contribution of climatic, land-cover and geologic heterogeneity on the definition of the spatio-temporal patterns of drought. We use the Köppen-Geiger climatic classification to assess how the contrasting climatic types within the basin determine differences on drought behavior. Land-cover types that govern the partition between evaporation and transpiration are also of great interest to discern the influence of vegetation and crop types on the anomalies of evapotranspiration across the distinct regions of the basin (e.g. forested mountains vs. crop-dominated areas). The third physical characteristic whose effect on drought we investigate is the impact of soil properties on soil moisture anomalies.</p><p>The maps and time series used for the spatio-temporal analysis are based on drought indices calculated with high-resolution datasets from remote sensing (MOD16A2ET and SMOS1km) and the land-surface model SURFEX-ISBA. The Standardized Precipitation Index (SPI), the EvapoTranspiration Deficit Index (ETDI) and the Soil Moisture Deficit Index (SMDI) are the three indices chosen to characterize the anomalies of the corresponding rainfall (atmospheric), evapotranspiration (atmosphere-land interface) and soil moisture (land) anomalies (components of the water balance). The comparison of the correlations of the indices (with different time lags) between contrasting regions offers insights about the impact of climate, land-cover and soil properties in the dominance, the timing of the response and memory aspects of the interactions. The high spatial and temporal resolution of remote sensing and land-surface model data allows adopting time and spatial scales suitable to investigate the influence of these physical factors with detail beyond comparison with ground-based datasets.</p><p>The spatial and temporal analysis prove useful to investigate the physical factors of influence on the anomalies between rainfall, evapotranspiration and soil moisture. This approach facilitates the physical interpretation of the anomalies of drought indices aiming to improve the characterization of drought in heterogeneous semi-arid areas like the Ebro River Basin.</p>


2019 ◽  
Vol 12 (1) ◽  
pp. 179-193 ◽  
Author(s):  
Chantelle Burton ◽  
Richard Betts ◽  
Manoel Cardoso ◽  
Ted R. Feldpausch ◽  
Anna Harper ◽  
...  

Abstract. Disturbance of vegetation is a critical component of land cover, but is generally poorly constrained in land surface and carbon cycle models. In particular, land-use change and fire can be treated as large-scale disturbances without full representation of their underlying complexities and interactions. Here we describe developments to the land surface model JULES (Joint UK Land Environment Simulator) to represent land-use change and fire as distinct processes which interact with simulated vegetation dynamics. We couple the fire model INFERNO (INteractive Fire and Emission algoRithm for Natural envirOnments) to dynamic vegetation within JULES and use the HYDE (History Database of the Global Environment) land cover dataset to analyse the impact of land-use change on the simulation of present day vegetation. We evaluate the inclusion of land use and fire disturbance against standard benchmarks. Using the Manhattan metric, results show improved simulation of vegetation cover across all observed datasets. Overall, disturbance improves the simulation of vegetation cover by 35 % compared to vegetation continuous field (VCF) observations from MODIS and 13 % compared to the Climate Change Initiative (CCI) from the ESA. Biases in grass extent are reduced from −66 % to 13 %. Total woody cover improves by 55 % compared to VCF and 20 % compared to CCI from a reduction in forest extent in the tropics, although simulated tree cover is now too sparse in some areas. Explicitly modelling fire and land use generally decreases tree and shrub cover and increases grasses. The results show that the disturbances provide important contributions to the realistic modelling of vegetation on a global scale, although in some areas fire and land use together result in too much disturbance. This work provides a substantial contribution towards representing the full complexity and interactions between land-use change and fire that could be used in Earth system models.


2020 ◽  
Author(s):  
Leqiang Sun ◽  
Stéphane Belair ◽  
Marco Carrera ◽  
Bernard Bilodeau

<p>Canadian Space Agency (CSA) has recently started receiving and processing the images from the recently launched C-band RADARSAT Constellation Mission (RCM). The backscatter and soil moisture retrievals products from the previously launched RADARSAT-2 agree well with both in-situ measurements and surface soil moisture modeled with land surface model Soil, Vegetation, and Snow (SVS). RCM will provide those products at an even better spatial coverage and temporal resolution. In preparation of the potential operational application of RCM products in Canadian Meteorological Center (CMC), this paper presents the scenarios of assimilating either soil moisture retrieval or outright backscatter signal in a 100-meter resolution version of the Canadian Land Data Assimilation System (CaLDAS) on field scale with time interval of three hours. The soil moisture retrieval map was synthesized by extrapolating the regression relationship between in-situ measurements and open loop model output based on soil texture lookup table. Based on this, the backscatter map was then generated with the surface roughness retrieved from RADARSAT-2 images using a modified Integral Equation Model (IEM) model. Bias correction was applied to the Ensemble Kalman filter (EnKF) to mitigate the impact of nonlinear errors introduced by multi-sourced perturbations. Initial results show that the assimilation of backscatter is as effective as assimilating soil moisture retrievals. Compared to open loop, both can improve the analysis of surface moisture, particularly in terms of reducing bias.  </p>


2014 ◽  
Vol 15 (3) ◽  
pp. 1293-1302 ◽  
Author(s):  
M. Tugrul Yilmaz ◽  
Wade T. Crow

Abstract Triple collocation analysis (TCA) enables estimation of error variances for three or more products that retrieve or estimate the same geophysical variable using mutually independent methods. Several statistical assumptions regarding the statistical nature of errors (e.g., mutual independence and orthogonality with respect to the truth) are required for TCA estimates to be unbiased. Even though soil moisture studies commonly acknowledge that these assumptions are required for an unbiased TCA, no study has specifically investigated the degree to which errors in existing soil moisture datasets conform to these assumptions. Here these assumptions are evaluated both analytically and numerically over four extensively instrumented watershed sites using soil moisture products derived from active microwave remote sensing, passive microwave remote sensing, and a land surface model. Results demonstrate that nonorthogonal and error cross-covariance terms represent a significant fraction of the total variance of these products. However, the overall impact of error cross correlation on TCA is found to be significantly larger than the impact of nonorthogonal errors. Because of the impact of cross-correlated errors, TCA error estimates generally underestimate the true random error of soil moisture products.


2011 ◽  
Vol 4 (4) ◽  
pp. 1115-1131 ◽  
Author(s):  
J. Mao ◽  
S. J. Phipps ◽  
A. J. Pitman ◽  
Y. P. Wang ◽  
G. Abramowitz ◽  
...  

Abstract. The CSIRO Mk3L climate system model, a reduced-resolution coupled general circulation model, has previously been described in this journal. The model is configured for millennium scale or multiple century scale simulations. This paper reports the impact of replacing the relatively simple land surface scheme that is the default parameterisation in Mk3L with a sophisticated land surface model that simulates the terrestrial energy, water and carbon balance in a physically and biologically consistent way. An evaluation of the new model's near-surface climatology highlights strengths and weaknesses, but overall the atmospheric variables, including the near-surface air temperature and precipitation, are simulated well. The impact of the more sophisticated land surface model on existing variables is relatively small, but generally positive. More significantly, the new land surface scheme allows an examination of surface carbon-related quantities including net primary productivity which adds significantly to the capacity of Mk3L. Overall, results demonstrate that this reduced-resolution climate model is a good foundation for exploring long time scale phenomena. The addition of the more sophisticated land surface model enables an exploration of important Earth System questions including land cover change and abrupt changes in terrestrial carbon storage.


2011 ◽  
Vol 15 (15) ◽  
pp. 1-38 ◽  
Author(s):  
Z. M. Subin ◽  
W. J. Riley ◽  
J. Jin ◽  
D. S. Christianson ◽  
M. S. Torn ◽  
...  

Abstract A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California’s climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California’s climate was assessed by comparing simulations by WRF3–CLM3.5 and WRF3–Noah to observations from 1982 to 1991. Using WRF3–CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of −0.7° to +1°C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2°–1.2°C reductions in summer daily-mean 2-m air temperature and 2.0°–3.7°C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate–vegetation interactions.


Sign in / Sign up

Export Citation Format

Share Document