scholarly journals Ecosystem Feedbacks to Climate Change in California: Development, Testing, and Analysis Using a Coupled Regional Atmosphere and Land Surface Model (WRF3–CLM3.5)

2011 ◽  
Vol 15 (15) ◽  
pp. 1-38 ◽  
Author(s):  
Z. M. Subin ◽  
W. J. Riley ◽  
J. Jin ◽  
D. S. Christianson ◽  
M. S. Torn ◽  
...  

Abstract A regional atmosphere model [Weather Research and Forecasting model version 3 (WRF3)] and a land surface model [Community Land Model, version 3.5 (CLM3.5)] were coupled to study the interactions between the atmosphere and possible future California land-cover changes. The impact was evaluated on California’s climate of changes in natural vegetation under climate change and of intentional afforestation. The ability of WRF3 to simulate California’s climate was assessed by comparing simulations by WRF3–CLM3.5 and WRF3–Noah to observations from 1982 to 1991. Using WRF3–CLM3.5, the authors performed six 13-yr experiments using historical and future large-scale climate boundary conditions from the Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1). The land-cover scenarios included historical and future natural vegetation from the Mapped Atmosphere-Plant-Soil System-Century 1 (MC1) dynamic vegetation model, in addition to a future 8-million-ha California afforestation scenario. Natural vegetation changes alone caused summer daily-mean 2-m air temperature changes of −0.7° to +1°C in regions without persistent snow cover, depending on the location and the type of vegetation change. Vegetation temperature changes were much larger than the 2-m air temperature changes because of the finescale spatial heterogeneity of the imposed vegetation change. Up to 30% of the magnitude of the summer daily-mean 2-m air temperature increase and 70% of the magnitude of the 1600 local time (LT) vegetation temperature increase projected under future climate change were attributable to the climate-driven shift in land cover. The authors projected that afforestation could cause local 0.2°–1.2°C reductions in summer daily-mean 2-m air temperature and 2.0°–3.7°C reductions in 1600 LT vegetation temperature for snow-free regions, primarily because of increased evapotranspiration. Because some of these temperature changes are of comparable magnitude to those projected under climate change this century, projections of climate and vegetation change in this region need to consider these climate–vegetation interactions.

2018 ◽  
Vol 11 (2) ◽  
pp. 541-560 ◽  
Author(s):  
Przemyslaw Zelazowski ◽  
Chris Huntingford ◽  
Lina M. Mercado ◽  
Nathalie Schaller

Abstract. Global circulation models (GCMs) are the best tool to understand climate change, as they attempt to represent all the important Earth system processes, including anthropogenic perturbation through fossil fuel burning. However, GCMs are computationally very expensive, which limits the number of simulations that can be made. Pattern scaling is an emulation technique that takes advantage of the fact that local and seasonal changes in surface climate are often approximately linear in the rate of warming over land and across the globe. This allows interpolation away from a limited number of available GCM simulations, to assess alternative future emissions scenarios. In this paper, we present a climate pattern-scaling set consisting of spatial climate change patterns along with parameters for an energy-balance model that calculates the amount of global warming. The set, available for download, is derived from 22 GCMs of the WCRP CMIP3 database, setting the basis for similar eventual pattern development for the CMIP5 and forthcoming CMIP6 ensemble. Critically, it extends the use of the IMOGEN (Integrated Model Of Global Effects of climatic aNomalies) framework to enable scanning across full uncertainty in GCMs for impact studies. Across models, the presented climate patterns represent consistent global mean trends, with a maximum of 4 (out of 22) GCMs exhibiting the opposite sign to the global trend per variable (relative humidity). The described new climate regimes are generally warmer, wetter (but with less snowfall), cloudier and windier, and have decreased relative humidity. Overall, when averaging individual performance across all variables, and without considering co-variance, the patterns explain one-third of regional change in decadal averages (mean percentage variance explained, PVE, 34.25±5.21), but the signal in some models exhibits much more linearity (e.g. MIROC3.2(hires): 41.53) than in others (GISS_ER: 22.67). The two most often considered variables, near-surface temperature and precipitation, have a PVE of 85.44±4.37 and 14.98±4.61, respectively. We also provide an example assessment of a terrestrial impact (changes in mean runoff) and compare projections by the IMOGEN system, which has one land surface model, against direct GCM outputs, which all have alternative representations of land functioning. The latter is noted as an additional source of uncertainty. Finally, current and potential future applications of the IMOGEN version 2.0 modelling system in the areas of ecosystem modelling and climate change impact assessment are presented and discussed.


2021 ◽  
Author(s):  
Samuel Scherrer ◽  
Wolfgang Preimesberger ◽  
Monika Tercjak ◽  
Zoltan Bakcsa ◽  
Alexander Boresch ◽  
...  

<p>To validate satellite soil moisture products and compare their quality with other products, standardized, fully traceable validation methods are required. The QA4SM (Quality Assurance for Soil Moisture; ) free online validation tool provides an easy-to-use implementation of community best practices and requirements set by the Global Climate Observing System and the Committee on Earth Observation Satellites. It sets the basis for a community wide standard for validation studies.</p><p>QA4SM can be used to preprocess, intercompare, store, and visualise validation results. It uses state-of-the-art open-access soil moisture data records such as the European Space Agency’s Climate Change Initiative (ESA CCI) and the Copernicus Climate Change Services (C3S) soil moisture datasets, as well as single-sensor products, e.g. H-SAF Metop-A/B ASCAT surface soil moisture, SMOS-IC, and SMAP L3 soil moisture. Non-satellite data include in-situ data from the International Soil Moisture Network (ISMN: ), as well as land surface model or reanalysis products, e.g. ERA5 soil moisture.</p><p>Users can interactively choose temporal or spatial subsets of the data and apply filters on quality flags. Additionally, validation of anomalies and application of different scaling methods are possible. The tool provides traditional validation metrics for dataset pairs (e.g. correlation, RMSD) as well as triple collocation metrics for dataset triples. All results can be visualised on the webpage, downloaded as figures, or downloaded in NetCDF format for further use. Archiving and publishing features allow users to easily store and share validation results. Published validation results can be cited in reports and publications via DOIs.</p><p>The new version of the service provides support for high-resolution soil moisture products (from Sentinel-1), additional datasets, and improved usability.</p><p>We present an overview and examples of the online tool, new features, and give an outlook on future developments.</p><p><em>Acknowledgements: This work was supported by the QA4SM & QA4SM-HR projects, funded by the Austrian Space Applications Programme (FFG).</em></p>


2013 ◽  
Vol 6 (4) ◽  
pp. 1079-1093 ◽  
Author(s):  
T. L. Smallman ◽  
J. B. Moncrieff ◽  
M. Williams

Abstract. The Weather Research and Forecasting meteorological (WRF) model has been coupled to the Soil–Plant–Atmosphere (SPA) terrestrial ecosystem model, to produce WRF-SPA. SPA generates realistic land–atmosphere exchanges through fully coupled hydrological, carbon and energy cycles. The addition of a~land surface model (SPA) capable of modelling biospheric CO2 exchange allows WRF-SPA to be used for investigating the feedbacks between biosphere carbon balance, meteorology, and land use and land cover change. We have extensively validated WRF-SPA using multi-annual observations of air temperature, turbulent fluxes, net radiation and net ecosystem exchange of CO2 at three sites, representing the dominant vegetation types in Scotland (forest, managed grassland and arable agriculture). For example air temperature is well simulated across all sites (forest R2 = 0.92, RMSE = 1.7 °C, bias = 0.88 °C; managed grassland R2 = 0.73, RMSE = 2.7 °C, bias = −0.30 °C; arable agriculture R2 = 0.82, RMSE = 2.2 °C, bias = 0.46 °C; RMSE, root mean square error). WRF-SPA generates more realistic seasonal behaviour at the site level compared to an unmodified version of WRF, such as improved simulation of seasonal transitions in latent heat flux in arable systems. WRF-SPA also generates realistic seasonal CO2 exchanges across all sites. WRF-SPA is also able to realistically model atmospheric profiles of CO2 over Scotland, spanning a 3 yr period (2004–2006), capturing both profile structure, indicating realistic transport, and magnitude (model–data residual


2020 ◽  
Vol 13 (10) ◽  
pp. 4713-4747
Author(s):  
Tokuta Yokohata ◽  
Tsuguki Kinoshita ◽  
Gen Sakurai ◽  
Yadu Pokhrel ◽  
Akihiko Ito ◽  
...  

Abstract. Future changes in the climate system could have significant impacts on the natural environment and human activities, which in turn affect changes in the climate system. In the interaction between natural and human systems under climate change conditions, land use is one of the elements that play an essential role. On the one hand, future climate change will affect the availability of water and food, which may impact land-use change. On the other hand, human-induced land-use change can affect the climate system through biogeophysical and biogeochemical effects. To investigate these interrelationships, we developed MIROC-INTEG-LAND (MIROC INTEGrated LAND surface model version 1), an integrated model that combines the land surface component of global climate model MIROC (Model for Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land-use models. The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balance, human water management, and crop growth incorporates a land use decision-making model based on economic activities. In MIROC-INTEG-LAND, spatially detailed information regarding water resources and crop yields is reflected in the prediction of future land-use change, which cannot be considered in the conventional integrated assessment models. In this paper, we introduce the details and interconnections of the submodels of MIROC-INTEG-LAND, compare historical simulations with observations, and identify various interactions between the submodels. By evaluating the historical simulation, we have confirmed that the model reproduces the observed states well. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand. The newly developed MIROC-INTEG-LAND could be combined with atmospheric and ocean models to develop an integrated earth system model to simulate the interactions among coupled natural–human earth system components.


2014 ◽  
Vol 7 (5) ◽  
pp. 6773-6809
Author(s):  
T. Osborne ◽  
J. Gornall ◽  
J. Hooker ◽  
K. Williams ◽  
A. Wiltshire ◽  
...  

Abstract. Studies of climate change impacts on the terrestrial biosphere have been completed without recognition of the integrated nature of the biosphere. Improved assessment of the impacts of climate change on food and water security requires the development and use of models not only representing each component but also their interactions. To meet this requirement the Joint UK Land Environment Simulator (JULES) land surface model has been modified to include a generic parametrisation of annual crops. The new model, JULES-crop, is described and evaluation at global and site levels for the four globally important crops; wheat, soy bean, maize and rice is presented. JULES-crop demonstrates skill in simulating the inter-annual variations of yield for maize and soy bean at the global level, and for wheat for major spring wheat producing countries. The impact of the new parametrisation, compared to the standard configuration, on the simulation of surface heat fluxes is largely an alteration of the partitioning between latent and sensible heat fluxes during the later part of the growing season. Further evaluation at the site level shows the model captures the seasonality of leaf area index and canopy height better than in standard JULES. However, this does not lead to an improvement in the simulation of sensible and latent heat fluxes. The performance of JULES-crop from both an earth system and crop yield model perspective is encouraging however, more effort is needed to develop the parameterisation of the model for specific applications. Key future model developments identified include the specification of the yield gap to enable better representation of the spatial variability in yield.


2001 ◽  
Vol 17 (8) ◽  
pp. 643-652 ◽  
Author(s):  
A. H. Lynch ◽  
S. McIlwaine ◽  
J. Beringer ◽  
G. B. Bonan

2009 ◽  
Vol 137 (7) ◽  
pp. 2263-2285 ◽  
Author(s):  
Xingang Fan

Soil temperature is a major variable in land surface models, representing soil energy status, storage, and transfer. It serves as an important factor indicating the underlying surface heating condition for weather and climate forecasts. This study utilizes the Weather Research and Forecasting (WRF) model to study the impacts of changes to the surface heating condition, derived from soil temperature observations, on regional weather simulations. Large cold biases are found in the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis project (ERA-40) soil temperatures as compared to observations. At the same time, a warm bias is found in the lower boundary assumption adopted by the Noah land surface model. In six heavy rain cases studied herein, observed soil temperatures are used to initialize the land surface model and to provide a lower boundary condition at the bottom of the model soil layer. By analyzing the impacts from the incorporation of observed soil temperatures, the following major conclusions are drawn: 1) A consistent increase in the ground heat flux is found during the day, when the observed soil temperatures are used to correct the cold bias present in ERA-40. Soil temperature changes introduced at the initial time maintain positive values but gradually decrease in magnitude with time. Sensible and latent heat fluxes and the moisture flux experience an increase during the first 6 h. 2) An increase in soil temperature impacts the air temperature through surface exchange, and near-surface moisture through evaporation. During the first two days, an increase in air temperature is seen across the region from the surface up to about 800 hPa (∼1450 m). The maximum near-surface air temperature increase is found to be, averaged over all cases, 0.5 K on the first day and 0.3 K on the second day. 3) The strength of the low-level jet is affected by the changes described above and also by the consequent changes in horizontal gradients of pressure and thermal fields. Thus, the three-dimensional circulation is affected, in addition to changes seen in the humidity and thermal fields and the locations and intensities of precipitating systems. 4) Overall results indicate that the incorporation of observed soil temperatures introduces a persistent soil heating condition that is favorable to convective development and, consequently, improves the simulation of precipitation.


Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 398
Author(s):  
Kyla M. Dahlin ◽  
Donald Akanga ◽  
Danica L. Lombardozzi ◽  
David E. Reed ◽  
Gabriela Shirkey ◽  
...  

Land surface models (LSMs) predict how terrestrial fluxes of carbon, water, and energy change with abiotic drivers to inform the other components of Earth system models. Here, we focus on a single human-dominated watershed in southwestern Michigan, USA. We compare multiple processes in a commonly used LSM, the Community Land Model (CLM), to observational data at the single grid cell scale. For model inputs, we show correlations (Pearson’s R) ranging from 0.46 to 0.81 for annual temperature and precipitation, but a substantial mismatch between land cover distributions and their changes over time, with CLM correctly representing total agricultural area, but assuming large areas of natural grasslands where forests grow in reality. For CLM processes (outputs), seasonal changes in leaf area index (LAI; phenology) do not track satellite estimates well, and peak LAI in CLM is nearly double the satellite record (5.1 versus 2.8). Estimates of greenness and productivity, however, are more similar between CLM and observations. Summer soil moisture tracks in timing but not magnitude. Land surface reflectance (albedo) shows significant positive correlations in the winter, but not in the summer. Looking forward, key areas for model improvement include land cover distribution estimates, phenology algorithms, summertime radiative transfer modelling, and plant stress responses.


Sign in / Sign up

Export Citation Format

Share Document