scholarly journals Methyl-CpG-binding protein 2 promotes osteogenic differentiation of bone marrow mesenchymal stem cells through regulating forkhead box F1/Wnt/β-Catenin axis

Bioengineered ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 583-592
Author(s):  
Weiqin Ji ◽  
Xiaotong Sun
Human Cell ◽  
2020 ◽  
Vol 34 (1) ◽  
pp. 14-27
Author(s):  
Cheng Long ◽  
Shiqiang Cen ◽  
Zhou Zhong ◽  
Chang Zhou ◽  
Gang Zhong

AbstractMesenchymal stem cells (MSCs) are a promising regenerative medicine. The roles of miRNAs in osteogenic differentiation of bone marrow MSCs (BM-MSCs) remained less reported. Forkhead Box O3 (FOXO3) and alkaline phosphatase (ALP) levels in the BM-MSCs were measured on 3, 7, and 14 days after osteogenic differentiation. After transfection of FOXO3 overexpression plasmids or siFOXO3 into BM-MSCs, factors related to osteogenic differentiation or cell autophagy were determined. Besides, 3-methyladenine or rapamycin, as well as miR-223-3p mimic or inhibitor were applied to further determine the effect of FOXO3 in BM-MSCs. FOXO3 and ALP levels were increased in a time-dependent manner with osteogenic differentiation, supported by Alizarin Red Staining. Furthermore, up-regulated FOXO3 increased levels of ALP and factors related to osteogenic differentiation by increasing levels of autophagy-related factors. FOXO3, targeted by miR-223-3p, reversed the effects of miR-223-3p on factors related to BM-MSC autophagy and osteogenic differentiation. Down-regulated miR-223-3p expression promoted osteogenic differentiation of BM-MSCs by enhancing autophagy via targeting FOXO3, suggesting the potential of miR-223-3p as a therapeutic target for enhancing bone functions.


2014 ◽  
Vol 2 (23) ◽  
pp. 3609-3617 ◽  
Author(s):  
Haifeng Zeng ◽  
Xiyu Li ◽  
Fang Xie ◽  
Li Teng ◽  
Haifeng Chen

A novel approach for labelling and tracking BMSCs in bone tissue engineering by using dextran-coated fluorapatite nanorods doped with lanthanides.


2022 ◽  
Vol 12 (4) ◽  
pp. 794-799
Author(s):  
Le Chang ◽  
Wei Duan ◽  
Chuang Wang ◽  
Jian Zhang

This study was to determine whether microRNA (miRNA)-126 regulates osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Rat BMSCs were extracted and stimulated for osteogenic differentiation. Functional experiments were conducted to assess miR-126’s impact on BMSCs differentiation. Western blot and RT-qPCR determined miR-126 expression. ALP activity detection and alizarin red staining detection were also performed. After osteogenic differentiation of BMSCs, miR-126 expression was gradually decreased over time. Overexpression of miR-26 decreased ALP activity, Notch signaling activity as well as declined Runx2 expression and calcium Salt nodules after treatment. Importantly, we found that Smad4 serves as a target of miR-126 while upregulation of the miRNA was accompanied with the decreased Smad4 protein expression without affecting the Smad4 mRNA level. In conclusion, miR-126 restrains osteogenic differentiation through inhibition of SMAD4 signaling, providing a novel insight into the mechanism.


Sign in / Sign up

Export Citation Format

Share Document