scholarly journals Protein disulfide-isomerase A3 knockdown attenuates oxidized low-density lipoprotein-induced oxidative stress, inflammation and endothelial dysfunction in human umbilical vein endothelial cells by downregulating activating transcription factor 2

Bioengineered ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 1436-1446
Author(s):  
Jing Jia ◽  
Yueping Wang ◽  
Ruijuan Huang ◽  
Fengxia Du ◽  
Xiaozhu Shen ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Chengcheng Chang ◽  
Hongli Liu ◽  
Cong Wei ◽  
Liping Chang ◽  
Junqing Liang ◽  
...  

Vascular hyperpermeability resulting from distortion of endothelial junctions is associated with a number of cardiovascular diseases. Endothelial tight junction regulates the paracellular permeability of macromolecules, a function ofHuman Umbilical Vein Endothelial Cells(HUVEC) monolayers that can be regulated byoxidized Low-density Lipoprotein(ox-LDL). However, the understanding of drug regulation of vascular hyperpermeability is so far limited. This study thus aimed to investigate the role ofTongxinluo(TXL) in the maintenance of the vascular endothelial paracellular permeability. Here, changes in permeability were determined by measuring the paracellular flux of FITC-dextran 40000 (FD40), while protein expression and intercellular distribution were examined by western blot and immunofluorescence assay, respectively. We found that TXL alleviated the ox-LDL-induced increase in flux of FD40 and then reduced the hyperpermeability. Moreover, ox-LDL-induced disruptions of ZO-1, occludin, and claudin1 were also restored. This is via the activation of ERK1/2 in the vascular endothelial cells. Our results provide insights into the molecular mechanism by which TXL alleviates ox-LDL-induced hyperpermeability and provide the basis for further investigations of TXL as regulators of vascular barrier function.


Sign in / Sign up

Export Citation Format

Share Document