CO2-water-rock predictions from aquifer and oil field drill core data: The Precipice Sandstone-Evergreen Formation CO2 storage reservoir-seal pair

2019 ◽  
Vol 2019 (1) ◽  
pp. 1-5
Author(s):  
J. K. Pearce ◽  
A. D. La Croix ◽  
F. Brink ◽  
V. Honari ◽  
S. Gonzalez ◽  
...  
2021 ◽  
Author(s):  
Dale Douglas Erickson ◽  
Greg Metcalf

Abstract This paper discusses the development and deployment of a specialized online and offline integrated model to simulate the CO2 (Carbon Dioxide) Injection process. There is a very high level of CO2 in an LNG development and the CO2 must be removed in order to prepare the gas to be processed into LNG. To mitigate the global warming effects of this CO2, a large portion of the CO2 Rich Stream (98% purity) is injected back into a depleted oil field. To reduce costs, carbon steel flowlines are used but this introduces a risk of internal corrosion. The presence of free water increases the internal corrosion risk, and for this reason, a predictive model discussed in this paper is designed to help operations prevent free water dropout in the network in real time. A flow management tool (FMT) is used to monitor the current state of the system and helps look at the impact of future events (startup, shutdowns etc.). The tool models the flow of the CO2 rich stream from the outlet of the compressor trains, through the network pipeline and manifolds and then into the injection wells. System behavior during steady state and transient operation is captured and analyzed to check water content and the balance of trace chemicals along with temperature and pressure throughout the network helping operators estimate corrosion rates and monitor the overall integrity of the system. The system has been running online for 24/7 for 2 years. The model has been able to match events like startup/shutdown, cooldowns and blowdowns. During these events the prediction of temperature/pressure at several locations in the field matches measured data. The model is then able to forecasts events into the future to help operations plan how they will operate the field. The tool uses a specialized thermodynamic model to predict the dropout of water in the near critical region of CO2 mixtures which includes various impurities. The model is designed to model startup and shutdown as the CO2 mixture moves across the phase boundary from liquid to gas or gas to liquid during these operations.


2020 ◽  
Author(s):  
Matthew Place ◽  
◽  
Marie-Josée Banwell ◽  
Giacomo Falorni ◽  
Neeraj Gupta

1999 ◽  
Vol 39 (1) ◽  
pp. 451 ◽  
Author(s):  
H. Crocker ◽  
C.C. Fung ◽  
K.W. Wong

The producing M. australis Sandstone of the Stag Oil Field is a bioturbated glauconitic sandstone that is difficult to evaluate using conventional methods. Well log and core data are available for the Stag Field and for the nearby Centaur–1 well. Eight wells have log data; six also have core data.In the past few years artificial intelligence has been applied to formation evaluation. In particular, artificial neural networks (ANN) used to match log and core data have been studied. The ANN approach has been used to analyse the producing Stag Field sands. In this paper, new ways of applying the ANN are reported. Results from simple ANN approach are unsatisfactory. An integrated ANN approach comprising the unsupervised Self-Organising Map (SOM) and the Supervised Back Propagation Neural Network (BPNN) appears to give a more reasonable analysis.In this case study the mineralogical and petrophysical characteristics of a cored well are predicted from the 'training' data set of the other cored wells in the field. The prediction from the ANN model is then used for comparison with the known core data. In this manner, the accuracy of the prediction is determined and a prediction qualifier computed.This new approach to formation evaluation should provide a match between log and core data that may be used to predict the characteristics of a similar uncored interval. Although the results for the Stag Field are satisfactory, further study applying the method to other fields is required.


2020 ◽  
Vol 10 (8) ◽  
pp. 3925-3935
Author(s):  
Samin Raziperchikolaee ◽  
Srikanta Mishra

Abstract Evaluating reservoir performance could be challenging, especially when available data are only limited to pressures and rates from oil field production and/or injection wells. Numerical simulation is a typical approach to estimate reservoir properties using the history match process by reconciling field observations and model predictions. Performing numerical simulations can be computationally expensive by considering a large number of grids required to capture the spatial variation in geological properties, detailed structural complexity of the reservoir, and numerical time steps to cover different periods of oil recovery. In this work, a simplified physics-based model is used to estimate specific reservoir parameters during CO2 storage into a depleted oil reservoir. The governing equation is based on the integrated capacitance resistance model algorithm. A multivariate linear regression method is used for estimating reservoir parameters (injectivity index and compressibility). Synthetic scenarios were generated using a multiphase flow numerical simulator. Then, the results of the simplified physics-based model in terms of the estimated fluid compressibility were compared against the simulation results. CO2 injection data including bottom hole pressure and injection rate were also gathered from a depleted oil reef in Michigan Basin. A field application of the simplified physics-based model was presented to estimate above-mentioned parameters for the case of CO2 storage in a depleted oil reservoir in Michigan Basin. The results of this work show that this simple lumped parameter model can be used for a quick estimation of the specific reservoir parameters and its changes over the CO2 injection period.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4862
Author(s):  
Nilesh Dixit ◽  
Paul McColgan ◽  
Kimberly Kusler

A good understanding of different rock types and their distribution is critical to locate oil and gas accumulations in the subsurface. Traditionally, rock core samples are used to directly determine the exact rock facies and what geological environments might be present. Core samples are often expensive to recover and, therefore, not always available for each well. Wireline logs provide a cheaper alternative to core samples, but they do not distinguish between various rock facies alone. This problem can be overcome by integrating limited core data with largely available wireline log data with machine learning. Here, we presented an application of machine learning in rock facies predictions based on limited core data from the Umiat Oil Field of Alaska. First, we identified five sandstone reservoir facies within the Lower Grandstand Member using core samples and mineralogical data available for the Umiat 18 well. Next, we applied machine learning algorithms (ascendant hierarchical clustering, self-organizing maps, artificial neural network, and multi-resolution graph-based clustering) to available wireline log data to build our models trained with core-driven information. We found that self-organizing maps provided the best result among other techniques for facies predictions. We used the best self-organizing maps scheme for predicting similar reservoir facies in nearby uncored wells—Umiat 23H and SeaBee-1. We validated our facies prediction results for these wells with observed seismic data.


2014 ◽  
Vol 20 ◽  
pp. 272-284 ◽  
Author(s):  
Jeffrey M. Bielicki ◽  
Melisa F. Pollak ◽  
Jeffrey P. Fitts ◽  
Catherine A. Peters ◽  
Elizabeth J. Wilson

Sign in / Sign up

Export Citation Format

Share Document