scholarly journals Machine Learning-Based Probabilistic Lithofacies Prediction from Conventional Well Logs: A Case from the Umiat Oil Field of Alaska

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4862
Author(s):  
Nilesh Dixit ◽  
Paul McColgan ◽  
Kimberly Kusler

A good understanding of different rock types and their distribution is critical to locate oil and gas accumulations in the subsurface. Traditionally, rock core samples are used to directly determine the exact rock facies and what geological environments might be present. Core samples are often expensive to recover and, therefore, not always available for each well. Wireline logs provide a cheaper alternative to core samples, but they do not distinguish between various rock facies alone. This problem can be overcome by integrating limited core data with largely available wireline log data with machine learning. Here, we presented an application of machine learning in rock facies predictions based on limited core data from the Umiat Oil Field of Alaska. First, we identified five sandstone reservoir facies within the Lower Grandstand Member using core samples and mineralogical data available for the Umiat 18 well. Next, we applied machine learning algorithms (ascendant hierarchical clustering, self-organizing maps, artificial neural network, and multi-resolution graph-based clustering) to available wireline log data to build our models trained with core-driven information. We found that self-organizing maps provided the best result among other techniques for facies predictions. We used the best self-organizing maps scheme for predicting similar reservoir facies in nearby uncored wells—Umiat 23H and SeaBee-1. We validated our facies prediction results for these wells with observed seismic data.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7714
Author(s):  
Ha Quang Man ◽  
Doan Huy Hien ◽  
Kieu Duy Thong ◽  
Bui Viet Dung ◽  
Nguyen Minh Hoa ◽  
...  

The test study area is the Miocene reservoir of Nam Con Son Basin, offshore Vietnam. In the study we used unsupervised learning to automatically cluster hydraulic flow units (HU) based on flow zone indicators (FZI) in a core plug dataset. Then we applied supervised learning to predict HU by combining core and well log data. We tested several machine learning algorithms. In the first phase, we derived hydraulic flow unit clustering of porosity and permeability of core data using unsupervised machine learning methods such as Ward’s, K mean, Self-Organize Map (SOM) and Fuzzy C mean (FCM). Then we applied supervised machine learning methods including Artificial Neural Networks (ANN), Support Vector Machines (SVM), Boosted Tree (BT) and Random Forest (RF). We combined both core and log data to predict HU logs for the full well section of the wells without core data. We used four wells with six logs (GR, DT, NPHI, LLD, LSS and RHOB) and 578 cores from the Miocene reservoir to train, validate and test the data. Our goal was to show that the correct combination of cores and well logs data would provide reservoir engineers with a tool for HU classification and estimation of permeability in a continuous geological profile. Our research showed that machine learning effectively boosts the prediction of permeability, reduces uncertainty in reservoir modeling, and improves project economics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Thomas Martin ◽  
Ross Meyer ◽  
Zane Jobe

Machine-learning algorithms have been used by geoscientists to infer geologic and physical properties from hydrocarbon exploration and development wells for more than 40 years. These techniques historically utilize digital well-log information, which, like any remotely sensed measurement, have resolution limitations. Core is the only subsurface data that is true to geologic scale and heterogeneity. However, core description and analysis are time-intensive, and therefore most core data are not utilized to their full potential. Quadrant 204 on the United Kingdom Continental Shelf has publicly available open-source core and well log data. This study utilizes this dataset and machine-learning models to predict lithology and facies at the centimeter scale. We selected 12 wells from the Q204 region with well-log and core data from the Schiehallion, Foinaven, Loyal, and Alligin hydrocarbon fields. We interpreted training data from 659 m of core at the sub-centimeter scale, utilizing a lithology-based labeling scheme (five classes) and a depositional-process-based facies labeling scheme (six classes). Utilizing a “color-channel-log” (CCL) that summarizes the core image at each depth interval, our best performing trained model predicts the correct lithology with 69% accuracy (i.e., the predicted lithology output from the model is the same as the interpreted lithology) and predicts individual lithology classes of sandstone and mudstone with over 80% accuracy. The CCL data require less compute power than core image data and generate more accurate results. While the process-based facies labels better characterize turbidites and hybrid-event-bed stratigraphy, the machine-learning based predictions were not as accurate as compared to lithology. In all cases, the standard well-log data cannot accurately predict lithology or facies at the centimeter level. The machine-learning workflow developed for this study can unlock warehouses full of high-resolution data in a multitude of geological settings. The workflow can be applied to other geographic areas and deposit types where large quantities of photographed core material are available. This research establishes an open-source, python-based machine-learning workflow to analyze open-source core image data in a scalable, reproducible way. We anticipate that this study will serve as a baseline for future research and analysis of borehole and core data.


2020 ◽  
Vol 12 (7) ◽  
pp. 1218
Author(s):  
Laura Tuşa ◽  
Mahdi Khodadadzadeh ◽  
Cecilia Contreras ◽  
Kasra Rafiezadeh Shahi ◽  
Margret Fuchs ◽  
...  

Due to the extensive drilling performed every year in exploration campaigns for the discovery and evaluation of ore deposits, drill-core mapping is becoming an essential step. While valuable mineralogical information is extracted during core logging by on-site geologists, the process is time consuming and dependent on the observer and individual background. Hyperspectral short-wave infrared (SWIR) data is used in the mining industry as a tool to complement traditional logging techniques and to provide a rapid and non-invasive analytical method for mineralogical characterization. Additionally, Scanning Electron Microscopy-based image analyses using a Mineral Liberation Analyser (SEM-MLA) provide exhaustive high-resolution mineralogical maps, but can only be performed on small areas of the drill-cores. We propose to use machine learning algorithms to combine the two data types and upscale the quantitative SEM-MLA mineralogical data to drill-core scale. This way, quasi-quantitative maps over entire drill-core samples are obtained. Our upscaling approach increases result transparency and reproducibility by employing physical-based data acquisition (hyperspectral imaging) combined with mathematical models (machine learning). The procedure is tested on 5 drill-core samples with varying training data using random forests, support vector machines and neural network regression models. The obtained mineral abundance maps are further used for the extraction of mineralogical parameters such as mineral association.


2021 ◽  
Author(s):  
Lianteng Song ◽  
◽  
Zhonghua Liu ◽  
Chaoliu Li ◽  
Congqian Ning ◽  
...  

Geomechanical properties are essential for safe drilling, successful completion, and exploration of both conven-tional and unconventional reservoirs, e.g. deep shale gas and shale oil. Typically, these properties could be calcu-lated from sonic logs. However, in shale reservoirs, it is time-consuming and challenging to obtain reliable log-ging data due to borehole complexity and lacking of in-formation, which often results in log deficiency and high recovery cost of incomplete datasets. In this work, we propose the bidirectional long short-term memory (BiL-STM) which is a supervised neural network algorithm that has been widely used in sequential data-based pre-diction to estimate geomechanical parameters. The pre-diction from log data can be conducted from two differ-ent aspects. 1) Single-Well prediction, the log data from a single well is divided into training data and testing data for cross validation; 2) Cross-Well prediction, a group of wells from the same geographical region are divided into training set and testing set for cross validation, as well. The logs used in this work were collected from 11 wells from Jimusaer Shale, which includes gamma ray, bulk density, resistivity, and etc. We employed 5 vari-ous machine learning algorithms for comparison, among which BiLSTM showed the best performance with an R-squared of more than 90% and an RMSE of less than 10. The predicted results can be directly used to calcu-late geomechanical properties, of which accuracy is also improved in contrast to conventional methods.


2021 ◽  
Author(s):  
Marian Popescu ◽  
Rebecca Head ◽  
Tim Ferriday ◽  
Kate Evans ◽  
Jose Montero ◽  
...  

Abstract This paper presents advancements in machine learning and cloud deployment that enable rapid and accurate automated lithology interpretation. A supervised machine learning technique is described that enables rapid, consistent, and accurate lithology prediction alongside quantitative uncertainty from large wireline or logging-while-drilling (LWD) datasets. To leverage supervised machine learning, a team of geoscientists and petrophysicists made detailed lithology interpretations of wells to generate a comprehensive training dataset. Lithology interpretations were based on applying determinist cross-plotting by utilizing and combining various raw logs. This training dataset was used to develop a model and test a machine learning pipeline. The pipeline was applied to a dataset previously unseen by the algorithm, to predict lithology. A quality checking process was performed by a petrophysicist to validate new predictions delivered by the pipeline against human interpretations. Confidence in the interpretations was assessed in two ways. The prior probability was calculated, a measure of confidence in the input data being recognized by the model. Posterior probability was calculated, which quantifies the likelihood that a specified depth interval comprises a given lithology. The supervised machine learning algorithm ensured that the wells were interpreted consistently by removing interpreter biases and inconsistencies. The scalability of cloud computing enabled a large log dataset to be interpreted rapidly; >100 wells were interpreted consistently in five minutes, yielding >70% lithological match to the human petrophysical interpretation. Supervised machine learning methods have strong potential for classifying lithology from log data because: 1) they can automatically define complex, non-parametric, multi-variate relationships across several input logs; and 2) they allow classifications to be quantified confidently. Furthermore, this approach captured the knowledge and nuances of an interpreter's decisions by training the algorithm using human-interpreted labels. In the hydrocarbon industry, the quantity of generated data is predicted to increase by >300% between 2018 and 2023 (IDC, Worldwide Global DataSphere Forecast, 2019–2023). Additionally, the industry holds vast legacy data. This supervised machine learning approach can unlock the potential of some of these datasets by providing consistent lithology interpretations rapidly, allowing resources to be used more effectively.


2019 ◽  
Vol 7 (3) ◽  
pp. SE1-SE18 ◽  
Author(s):  
Lennon Infante-Paez ◽  
Kurt J. Marfurt

Volcanic rocks with intermediate magma composition indicate distinctive patterns in seismic amplitude data. Depending on the processes by which they were extruded to the surface, these patterns may be chaotic, moderate-amplitude reflectors (indicative of pyroclastic flows) or continuous high-amplitude reflectors (indicative of lava flows). We have identified appropriate seismic attributes that highlight the characteristics of such patterns and use them as input to self-organizing maps to isolate these volcanic facies from their clastic counterpart. Our analysis indicates that such clustering is possible when the patterns are approximately self-similar, such that the appearance of objects does not change at different scales of observation. We adopt a workflow that can help interpreters to decide what methods and what attributes to use as an input for machine learning algorithms, depending on the nature of the target pattern of interest, and we apply it to the Kora 3D seismic survey acquired offshore in the Taranaki Basin, New Zealand. The resulting clusters are then interpreted using the limited well control and principles of seismic geomorphology.


2021 ◽  
Author(s):  
Bohan Zheng

With Internet of Things (IoT) being prevalently adopted in recent years, traditional machine learning and data mining methods can hardly be competent to deal with the complex big data problems if applied alone. However, hybridizing those who have complementary advantages could achieve optimized practical solutions. This work discusses how to solve multivariate regression problems and extract intrinsic knowledge by hybridizing Self-Organizing Maps (SOM) and Regression Trees. A dual-layer SOM map is developed in which the first layer accomplishes unsupervised learning and then regression tree layer performs supervised learning in the second layer to get predictions and extract knowledge. In this framework, SOM neurons serve as kernels with similar training samples mapped so that regression tree could achieve regression locally. In this way, the difficulties of applying and visualizing local regression on high dimensional data are overcome. Further, we provide an automated growing mechanism based on a few stop criteria without adding new parameters. A case study of solving Electrical Vehicle (EV) range anxiety problem is presented and it demonstrates that our proposed hybrid model is quantitatively precise and interpretive. key words: Multivariate Regression, Big Data, Machine Learning, Data Mining, Self-Organizing Maps (SOM), Regression Tree, Electrical Vehicle (EV), Range Estimation, Internet of Things (IoT)


2021 ◽  
Vol 54 (2E) ◽  
pp. 186-197
Author(s):  
Maan Al-Majid

The Early Miocene Euphrates Formation is characterized by its oil importance in the Qayyarah oil field and its neighboring fields. This study relied on the core and log data analyses of two wells in the Qayyarah oil field. According to the cross-plot’s information, the Euphrates Formation is mainly composed of dolomite with varying proportions of limestone and shale. Various measurements to calculate the porosity, permeability, and water saturation on the core samples were made at different depths in the two studied wells Qy-54 and Qy-55. A relationship between water saturation and capillary pressure has been plotted for some core samples to predict sites of normal compaction in the formation. The line regression for this relationship was considered as a function of the ratio of large voids to the total volume of voids in the sample. The coefficient of determination parameter was used in estimating the amount of homogeneity in the sizes of the voids, as it was observed to increase significantly at the sites of shale. After dividing the formation into several zones, the well log data were analyzed to predict the locations of oil presence in both wells. The significance of the negative secondary porosity in detecting the hydrocarbon sites in the Euphrates Formation was deduced by its correspondence with the large increase in the true resistivity values in both wells. More than 90% of the formation parts represent reservoir rocks in both wells, but only about 75% of them are oil reservoirs in the well Qy-54 and nearly 50% of them are oil reservoirs in the well Qy-55.


2021 ◽  
Vol 198 ◽  
pp. 108125
Author(s):  
Mohammad Sabah ◽  
Mohammad Mehrad ◽  
Seyed Babak Ashrafi ◽  
David A. Wood ◽  
Shadi Fathi

Sign in / Sign up

Export Citation Format

Share Document