scholarly journals Delayed specific IgM antibody responses observed among COVID-19 patients with severe progression

2020 ◽  
Vol 9 (1) ◽  
pp. 1096-1101 ◽  
Author(s):  
Liang Shen ◽  
Chunhua Wang ◽  
Jianzhong Zhao ◽  
Xiaoyong Tang ◽  
Ying Shen ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jyotsna Shah ◽  
Song Liu ◽  
Hari-Hara Potula ◽  
Prerna Bhargava ◽  
Iris Cruz ◽  
...  

Abstract Background Rapid and simple serological assays for characterizing antibody responses are important in the current COVID-19 pandemic caused by SARS-CoV-2. Multiplex immunoblot (IB) assays termed COVID-19 IB assays were developed for detecting IgG and IgM antibodies to SARS-CoV-2 virus proteins in COVID-19 patients. Methods Recombinant nucleocapsid protein and the S1, S2 and receptor binding domain (RBD) of the spike protein of SARS-CoV-2 were used as target antigens in the COVID-19 IBs. Specificity of the IB assay was established with 231 sera from persons with allergy, unrelated viral infections, autoimmune conditions and suspected tick-borne diseases, and 32 goat antisera to human influenza proteins. IgG and IgM COVID-19 IBs assays were performed on 84 sera obtained at different times after a positive RT-qPCR test from 37 COVID-19 patients with mild symptoms. Results Criteria for determining overall IgG and IgM antibody positivity using the four SARS-CoV-2 proteins were developed by optimizing specificity and sensitivity in the COVID-19 IgG and IgM IB assays. The estimated sensitivities and specificities of the COVID-19 IgG and IgM IBs for IgG and IgM antibodies individually or for either IgG or IgM antibodies meet the US recommendations for laboratory serological diagnostic tests. The proportion of IgM-positive sera from the COVID-19 patients following an RT-qPCR positive test was maximal at 83% before 10 days and decreased to 0% after 100 days, while the proportions of IgG-positive sera tended to plateau between days 11 and 65 at 78–100% and fall to 44% after 100 days. Detection of either IgG or IgM antibodies was better than IgG or IgM alone for assessing seroconversion in COVID-19. Both IgG and IgM antibodies detected RBD less frequently than S1, S2 and N proteins. Conclusions The multiplex COVID-19 IB assays offer many advantages for simultaneously evaluating antibody responses to different SARS-CoV-2 proteins in COVID-19 patients.


2021 ◽  
pp. 113046
Author(s):  
A.M. Cook ◽  
S.E. Faustini ◽  
L.J. Williams ◽  
A.F. Cunningham ◽  
M.T. Drayson ◽  
...  

1996 ◽  
Vol 74 (3) ◽  
pp. 245-254 ◽  
Author(s):  
H VAN DER KEYL ◽  
C HSU ◽  
A TOLAT ◽  
S KANSIL ◽  
MR DALESANDRO ◽  
...  

1982 ◽  
Vol 12 (9) ◽  
pp. 713-719 ◽  
Author(s):  
Izumi Nakashima ◽  
Kenji Mizoguchi ◽  
Nobuo Kato ◽  
Fumihiko Nagase ◽  
Ken-Ichi Isobe ◽  
...  

1974 ◽  
Vol 140 (1) ◽  
pp. 239-252 ◽  
Author(s):  
Tomio Tada ◽  
Toshitada Takemori

Passively transferred thymocytes and spleen cells from donors primed with keyhole limpet hemocyanin (KLH) exerted differential suppressive effect on IgM and IgG antibody responses of syngeneic recipients immunized with DNP-KLH depending primarily on the time when KLH-primed cells were transferred. This was demonstrated by the decrease in the numbers of DNP-specific direct and indirect PFC in the spleen of the recipients given KLH-primed cells at different times during primary and secondary immunization. Whereas the cell transfer simultaneously with or 2 days after the primary immunization produced only slight suppression of the peak IgM antibody response, it caused profound suppression of late IgM and IgG antibody responses. By contrast, the cell transfer 3 days after the immunization produced immediate suppression of the ongoing IgM antibody response resulting in its earlier termination, while being unable to prevent the induction of IgG antibody response. KLH-primed cells could moderately suppress the secondary anti-DNP antibody response, in which IgG antibody response was found to be slightly more sensitive than IgM antibody response to the suppressive influence of KLH-primed cells. The suppressive effect of the KLH-primed spleen cells was completely eliminated by the in vitro treatment of the cells with anti-θ and C before cell transfer, indicating that cells responsible for the suppression are, in fact, T cells. The suppression of DNP-specific antibody response by KLH-primed T cells was achieved only if the recipients were immunized with DNP-KLH but not with DNP-heterologous carrier, suggesting that direct interaction between T and B cells is necessary for the suppression of the antibody response. It is concluded that susceptibility of B cells to the specific suppressive influence of T cells is inherently different depending on the differentiation stage of B cells and on the immunoglobulin class they are destined to produce.


Sign in / Sign up

Export Citation Format

Share Document