scholarly journals A residual power series technique for solving Boussinesq–Burgers equations

2017 ◽  
Vol 4 (1) ◽  
pp. 1279398 ◽  
Author(s):  
Bewar A. Mahmood ◽  
Majeed A. Yousif ◽  
Lishan Liu
2016 ◽  
Vol 10 (2) ◽  
pp. 765-775 ◽  
Author(s):  
Shaher Momani ◽  
Omar Abu Arqub ◽  
Ma’mon Abu Hammad ◽  
Zaer S. Abo-Hammour

2018 ◽  
Vol 22 ◽  
pp. 01044
Author(s):  
Selahattin Gulsen ◽  
Mustafa Inc ◽  
Harivan R. Nabi

In this study, two-dimensional Burgers' and coupled Burgers' equations are examined by the residual power series method. This method provides series solutions which are rapidly convergent and their components are easily calculable by Mathematica. When the solution is polynomial, the method gives the exact solution using Taylor series expansion. The results display that the method is more efficient, applicable and accuracy and the graphical consequences clearly present the reliability of the method.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1646
Author(s):  
Malik Bataineh ◽  
Mohammad Alaroud ◽  
Shrideh Al-Omari ◽  
Praveen Agarwal

Fuzzy differential equations provide a crucial tool for modeling numerous phenomena and uncertainties that potentially arise in various applications across physics, applied sciences and engineering. Reliable and effective analytical methods are necessary to obtain the required solutions, as it is very difficult to obtain accurate solutions for certain fuzzy differential equations. In this paper, certain fuzzy approximate solutions are constructed and analyzed by means of a residual power series (RPS) technique involving some class of fuzzy fractional differential equations. The considered methodology for finding the fuzzy solutions relies on converting the target equations into two fractional crisp systems in terms of ρ-cut representations. The residual power series therefore gives solutions for the converted systems by combining fractional residual functions and fractional Taylor expansions to obtain values of the coefficients of the fractional power series. To validate the efficiency and the applicability of our proposed approach we derive solutions of the fuzzy fractional initial value problem by testing two attractive applications. The compatibility of the behavior of the solutions is determined via some graphical and numerical analysis of the proposed results. Moreover, the comparative results point out that the proposed method is more accurate compared to the other existing methods. Finally, the results attained in this article emphasize that the residual power series technique is easy, efficient, and fast for predicting solutions of the uncertain models arising in real physical phenomena.


2020 ◽  
Vol 10 (3) ◽  
pp. 890 ◽  
Author(s):  
Mohammed Shqair ◽  
Mohammed Al-Smadi ◽  
Shaher Momani ◽  
Essam El-Zahar

In this paper, the general state of quantum mechanics equations that can be typically expressed by nonlinear fractional Schrödinger models will be solved based on an attractive efficient analytical technique, namely the conformable residual power series (CRPS). The fractional derivative is considered in a conformable sense. The desired analytical solution is obtained using conformable Taylor series expansion through substituting a truncated conformable fractional series and minimizing its residual errors to extract a supportive approximate solution in a rapidly convergent fractional series. This adaptation can be implemented as a novel alternative technique to deal with many nonlinear issues occurring in quantum physics. The effectiveness and feasibility of the CRPS procedures are illustrated by verifying three realistic applications. The obtained numerical results and graphical consequences indicate that the suggested method is a convenient and remarkably powerful tool in solving different types of fractional partial differential models.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Mohammad Alaroud ◽  
Mohammed Al-Smadi ◽  
Rokiah Rozita Ahmad ◽  
Ummul Khair Salma Din

This paper aims to present a novel optimization technique, the residual power series (RPS), for handling certain classes of fuzzy fractional differential equations of order 1<γ≤2 under strongly generalized differentiability. The proposed technique relies on generalized Taylor formula under Caputo sense aiming at extracting a supportive analytical solution in convergent series form. The RPS algorithm is significant and straightforward tool for creating a fractional power series solution without linearization, limitation on the problem’s nature, sort of classification, or perturbation. Some illustrative examples are provided to demonstrate the feasibility of the RPS scheme. The results obtained show that the scheme is simple and reliable and there is good agreement with exact solution.


Sign in / Sign up

Export Citation Format

Share Document