scholarly journals Land use impacts on physicochemical and microbial soil properties across the agricultural landscapes of Debrekidan, EasternTigray, Ethiopia

2019 ◽  
Vol 5 (1) ◽  
pp. 1708683
Author(s):  
Gebrejewergs Aredehey ◽  
Gebremedhn Berhe Zenebe ◽  
Aklil Gebremedhn ◽  
Manuel Tejada Moral
2021 ◽  
Author(s):  
Sigit D Sasmito ◽  
Pierre Taillardat ◽  
Letisha Fong ◽  
Jonathan Ren ◽  
Hanna Sundahl ◽  
...  

Soil Research ◽  
2012 ◽  
Vol 50 (5) ◽  
pp. 390
Author(s):  
Wentai Zhang ◽  
David C. Weindorf ◽  
Yuanda Zhu ◽  
Beatrix J. Haggard ◽  
Noura Bakr

Human-induced soil change is attracting increasing attention, yet how to quantitatively measure anthropogenic impact on changes in soil properties remains unclear. Eight selected soil properties—bulk density (BD), sand, silt, and clay content, pH, soil organic matter (SOM), total carbon (TC), and total nitrogen (TN)—at four soil depths (0–10, 10–20, 20–30, and 30–40 cm) were measured across three soil series (Gallion, Latanier and Sharkey) in south-central Louisiana, USA, to quantify changes in soil properties as a function of three contrasting land use types, i.e. forest, cropland, and Wetlands Reserve Program. Partial eta-squared values (η2) derived from two-way analysis of variance were used to quantitatively compare natural factors (soil series) and anthropogenic impact (land use) on these soil properties. Results showed that properties such as BD, pH, SOM, TC, and TN could be easily changed by anthropogenic disturbance, especially at 0–10 cm, while soil texture was mainly a natural factor. The anthropogenic factor accounted for 55.2%, 39.5%, 33.2%, and 36.0% of changes in the soil properties at 0–10, 10–20, 20–30, and 30–40 cm depth, respectively. These findings highlight the anthropogenic impact on selected soil properties.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 749
Author(s):  
Leonardo Bianchini ◽  
Gianluca Egidi ◽  
Ahmed Alhuseen ◽  
Adele Sateriano ◽  
Sirio Cividino ◽  
...  

The spatial mismatch between population growth and settlement expansion is at the base of current models of urban growth. Empirical evidence is increasingly required to inform planning measures promoting urban containment in the context of a stable (or declining) population. In these regards, per-capita indicators of land-use change can be adopted with the aim at evaluating long-term sustainability of urbanization processes. The present study assesses spatial variations in per-capita indicators of land-use change in Rome, Central Italy, at five years (1949, 1974, 1999, 2008, and 2016) with the final objective of quantifying the mismatch between urban expansion and population growth. Originally specialized in agricultural productions, Rome’s metropolitan area is a paradigmatic example of dispersed urban expansion in the Mediterranean basin. By considering multiple land-use dynamics, per-capita indicators of landscape change delineated three distinctive waves of growth corresponding with urbanization, suburbanization, and a more mixed stage with counter-urbanization and re-urbanization impulses. By reflecting different socioeconomic contexts on a local scale, urban fabric and forests were identified as the ‘winner’ classes, expanding homogeneously over time at the expense of cropland. Agricultural landscapes experienced a more heterogeneous trend with arable land and pastures declining systematically and more fragmented land classes (e.g., vineyards and olive groves) displaying stable (or slightly increasing) trends. The continuous reduction of per-capita surface area of cropland that’s supports a reduced production base, which is now insufficient to satisfy the rising demand for fresh food at the metropolitan scale, indicates the unsustainability of the current development in Rome and more generally in the whole Mediterranean basin, a region specialized traditionally in (proximity) agricultural productions.


Author(s):  
Jakub Horák ◽  
Patrik Rada ◽  
Ludwig Lettenmaier ◽  
Michal Andreas ◽  
Petr Bogusch ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vít Zelinka ◽  
Johana Zacharová ◽  
Jan Skaloš

AbstractThe term Sudetenland refers to large regions of the former Czechoslovakia that had been dominated by Germans. German population was expelled directly after the Second World War, between 1945 and 1947. Almost three million people left large areas in less than two years. This population change led to a break in the relationship between the people and the landscape. The aim of the study is to compare the trajectories of these changes in agricultural landscapes in lower and higher altitudes, both in depopulated areas and areas with preserved populations. This study included ten sites in the region of Northern Bohemia in Czechia (18,000 ha in total). Five of these sites represent depopulated areas, and the other five areas where populations remained preserved. Changes in the landscape were assessed through a bi-temporal analysis of land use change by using aerial photograph data from time hoirzons of 2018 and 1953. Land use changes from the 1950s to the present are corroborated in the studied depopulated and preserved areas mainly by the trajectory of agricultural land to forest. The results prove that both population displacement and landscape type are important factors that affect landscape changes, especially in agricultural landscapes.


2021 ◽  
Vol 193 (4) ◽  
Author(s):  
Fatihu Kabir Sadiq ◽  
Lemuel Musa Maniyunda ◽  
Abdulraheem Okehi Anumah ◽  
Kayode Adesina Adegoke

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1948
Author(s):  
Flavia Tromboni ◽  
Thomas E. Dilts ◽  
Sarah E. Null ◽  
Sapana Lohani ◽  
Peng Bun Ngor ◽  
...  

Establishing reference conditions in rivers is important to understand environmental change and protect ecosystem integrity. Ranked third globally for fish biodiversity, the Mekong River has the world’s largest inland fishery providing livelihoods, food security, and protein to the local population. It is therefore of paramount importance to maintain the water quality and biotic integrity of this ecosystem. We analyzed land use impacts on water quality constituents (TSS, TN, TP, DO, NO3−, NH4+, PO43−) in the Lower Mekong Basin. We then used a best-model regression approach with anthropogenic land-use as independent variables and water quality parameters as the dependent variables, to define reference conditions in the absence of human activities (corresponding to the intercept value). From 2000–2017, the population and the percentage of crop, rice, and plantation land cover increased, while there was a decrease in upland forest and flooded forest. Agriculture, urbanization, and population density were associated with decreasing water quality health in the Lower Mekong Basin. In several sites, Thailand and Laos had higher TN, NO3−, and NH4+ concentrations compared to reference conditions, while Cambodia had higher TP values than reference conditions, showing water quality degradation. TSS was higher than reference conditions in the dry season in Cambodia, but was lower than reference values in the wet season in Thailand and Laos. This study shows how deforestation from agriculture conversion and increasing urbanization pressure causes water quality decline in the Lower Mekong Basin, and provides a first characterization of reference water quality conditions for the Lower Mekong River and its tributaries.


Sign in / Sign up

Export Citation Format

Share Document